3,695 research outputs found

    Interpretation of the archaeological record for the area in and around the Helena Valley

    Get PDF

    Curare in deliveries

    Get PDF

    GPS Based Autonomous Navigation Study for the Lunar Gateway

    Get PDF
    This paper describes and predicts the performance of a conceptual autonomous GPS-based navigation system for NASA's planned lunar Gateway. This system is based on the flight-proven Magnetospheric Multiscale (MMS) GPS navigation system, augmented with an earth-pointed high-gain antenna and with an option for an atomic clock. High-fidelity simulations, calibrated against MMS flight data and making use of GPS transmitter patterns from the GPS Antenna Characterization Experiment (ACE) project are developed for operation of the system in the Gateway Near-Rectilinear Halo Orbit (NRHO). The results indicate that GPS can provide an autonomous, realtime navigation capability with comparable, or superior, performance to traditional Deep Space Network approach with eight hours of tracking per day

    Magnetic Properties of Linear Chain Systems: Metamagnetism of Single Crystal Co(pyridine)₂CI₂

    Get PDF
    The metamagnetic behavior of the low temperature properties of single crystal Co(pyridine)2Cl2 is discussed. At 1.25 K oriented single crystals exhibit a two-step metamagnetic transition at applied fields ~0.8 and 1.6 kG along the b-axis, a single transition at ~0.7 kG for applied fields along the a* axis, and a single transition at ~4.2 kG for an applied field along the c axis. Just above the transition fields a moment of 2”B/Co atom is measured for B0 parallel to the a* axis or b axis, and 0.4”B/Co atom is measured for the B0 parallel to the c axis. A large field dependent moment is observed at high fields. Many features of this compound closely mirror the behavior of CoCl2-2H20. However, the Co(pyridine)2Cl 2 has a much smaller interchain exchange, so that many features can be examined at lower fields. The basic features are consistent with a six-sublattice model for the ordered antiferromagnetic system. Measurements of magnetic moment versus temperature show that Co(pyridine)2Cl 2 does not obey a Curie-Weiss law even at relatively high temperatures

    A Software Platform for Post-Processing Waveform-Based NDE

    Get PDF
    Ultrasonic, microwave, and terahertz nondestructive evaluation imaging systems generally require the acquisition of waveforms at each scan point to form an image. For such systems, signal and image processing methods are commonly needed to extract information from the waves and improve resolution of, and highlight, defects in the image. Since some similarity exists for all waveform-based NDE methods, it would seem a common software platform containing multiple signal and image processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. This presentation describes NASA Glenn Research Center's approach in developing a common software platform for processing waveform-based NDE signals and images. This platform is currently in use at NASA Glenn and at Lockheed Martin Michoud Assembly Facility for processing of pulsed terahertz and ultrasonic data. Highlights of the software operation will be given. A case study will be shown for use with terahertz data. The authors also request scientists and engineers who are interested in sharing customized signal and image processing algorithms to contribute to this effort by letting the authors code up and include these algorithms in future releases

    Magnetic and Structural Properties of Nd₂Fe₁₇₋ₓMnₓ Solid Solutions

    Get PDF
    A series of Nd2Fe17-xMnx solid solutions with x values between 0 and and 6 were prepared and analyzed using magnetic measurements, neutron diffraction, and Mössbauer spectroscopy. All of the Nd2Fe17-xMnx samples crystallized in the Th2Zn17-x-type rhombohedral structure. The lattice parameters and unit cell volumes decrease with increasing manganese content up to ∌ x equal to 2, and then increase for higher manganese content. The magnetizations of Nd2Fe17-xMnx decrease with increasing manganese content and Nd2Fe17-xMnx is paramagnetic at room temperature for x greater than 3. The Curie temperature in Nd2Fe17-xMnx solid solutions is maximum for x equal to 0.5 and decreases at a rate of ∌ 10° per substituted manganese up to x equal to 3, after which it drops sharply. These results are discussed in terms of the manganese she occupancies in Nd2Fe17-xMnx

    Vulnerability of welders to manganese exposure--a neuroimaging study

    Get PDF
    Increased manganese (Mn) exposure is known to cause cognitive, psychiatric and motor deficits. Mn exposure occurs in different occupational settings, where the airborne Mn level and the size of respirable particulates may vary considerably. Recently the importance of the role of the cerebral cortex in Mn toxicity has been highlighted, especially in Mn-induced neuropsychological effects. In this study we used magnetic resonance imaging (MRI) to evaluate brain Mn accumulation using T1 signal intensity indices and to examine changes in brain iron content using T2* contrast, as well as magnetic resonance spectroscopy (MRS) to measure exposure-induced metabolite changes non-invasively in cortical and deep brain regions in Mn-exposed welders, Mn-exposed smelter workers and control factory workers with no measurable exposure to Mn. MRS data as well as T1 signal intensity indices and T2* values were acquired from the frontal cortex, posterior cingulate cortex, hippocampus, and thalamus. Smelters were exposed to higher air Mn levels and had a longer duration of exposure, which was reflected in higher Mn levels in erythrocytes and urine than in welders. Nonetheless, welders had more significant metabolic differences compared to controls than did the smelter workers, especially in the frontal cortex. T1 hyperintensities in the globus pallidus were observed in both Mn-exposed groups, but only welders showed significantly higher thalamic and hippocampal T1 hyperintensities, as well as significantly reduced T2* values in the frontal cortex. Our results indicate that (1) the cerebral cortex, in particular the frontal cortex, is clearly involved in Mn neurotoxic effects and (2) in spite of the lower air Mn levels and shorter duration of exposure, welders exhibit more extensive neuroimaging changes compared to controls than smelters, including measurable deposition of Mn in more brain areas. These results indicate that the type of exposure (particulate sizes, dust versus fume) and route of exposure play an important role in the extent of Mn-induced toxic effects on the brain

    The Nbp35/ApbC homolog acts as a nonessential [4Fe-4S] transfer protein in methanogenic archaea

    Get PDF
    © 2019 Federation of European Biochemical Societies The nucleotide binding protein 35 (Nbp35)/cytosolic Fe-S cluster deficient 1 (Cfd1)/alternative pyrimidine biosynthetic protein C (ApbC) protein homologs have been identified in all three domains of life. In eukaryotes, the Nbp35/Cfd1 heterocomplex is an essential Fe-S cluster assembly scaffold required for the maturation of Fe-S proteins in the cytosol and nucleus, whereas the bacterial ApbC is an Fe-S cluster transfer protein only involved in the maturation of a specific target protein. Here, we show that the Nbp35/ApbC homolog MMP0704 purified from its native archaeal host Methanococcus maripaludis contains a [4Fe-4S] cluster that can be transferred to a [4Fe-4S] apoprotein. Deletion of mmp0704 from M. maripaludis does not cause growth deficiency under our tested conditions. Our data indicate that Nbp35/ApbC is a nonessential [4Fe-4S] cluster transfer protein in methanogenic archaea

    Hubble Space Telescope Observations of UV Oscillations in WZ Sagittae During the Decline from Outburst

    Full text link
    We present a time series analysis of Hubble Space Telescope observations of WZ Sge obtained in 2001 September, October, November and December as WZ Sge declined from its 2001 July superoutburst. Previous analysis of these data showed the temperature of the white dwarf decreased from ~29,000 K to ~18,000 K. In this study we binned the spectra over wavelength to yield ultraviolet light curves at each epoch that were then analyzed for the presence of the well-known 27.87 s and 28.96 s oscillations. We detect the 29 s periodicity at all four epochs, but the 28 s periodicity is absent. The origin of these oscillations has been debated since their discovery in the 1970s and competing hypotheses are based on either white dwarf non-radial g-mode pulsations or magnetically-channelled accretion onto a rotating white dwarf. By analogy with the ZZ Ceti stars, we argue that the non-radial g-mode pulsation model demands a strong dependence of pulse period on the white dwarf's temperature. However, these observations show the 29 s oscillation is independent of the white dwarf's temperature. Thus we reject the white dwarf non-radial g-mode pulsation hypothesis as the sole origin of the oscillations. It remains unclear if magnetically-funnelled accretion onto a rapidly rotating white dwarf (or belt on the white dwarf) is responsible for producing the oscillations. We also report the detection of a QPO with period ~18 s in the September light curve. The amplitudes of the 29 s oscillation and the QPO vary erratically on short timescales and are not correlated with the mean system brightness nor with each other.Comment: 20 pages, 3 figures, 1 table; accepted for publication in Ap
    • 

    corecore