10 research outputs found

    Assessment of aortic regurgitation by transesophageal color Doppler imaging of the vena contracta: validation against an intraoperative aortic flow probe

    Get PDF
    AbstractOBJECTIVESThis study was performed to validate the accuracy of color flow vena contracta (VC) measurements of aortic regurgitation (AR) severity by comparing them to simultaneous intraoperative flow probe measurements of regurgitant fraction (RgF) and regurgitant volume (RgV).BACKGROUNDColor Doppler imaging of the vena contracta has emerged as a simple and reliable measure of the severity of valvular regurgitation. This study evaluated the accuracy of VC imaging of AR by transesophageal echocardiography (TEE).METHODSA transit-time flow probe was placed on the ascending aorta during cardiac surgery in 24 patients with AR. The flow probe was used to measure RgF and RgV simultaneously during VC imaging by TEE. Flow probe and VC imaging were interpreted separately and in blinded fashion.RESULTSA good correlation was found between VC width and RgF (r = 0.85) and RgV (r = 0.79). All six patients with VC width >6 mm had a RgF >0.50. All 18 patients with VC width <5 mm had a RgF <0.50. Vena contracta area also correlated well with both RgF (r = 0.81) and RgV (r = 0.84). All six patients with VC area >7.5 mm2had a RgF >0.50, and all 18 patients with a VC area <7.5 mm2had a RgF <0.50. In a subset of nine patients who underwent afterload manipulation to increase diastolic blood pressure, RgV increased significantly (34 ± 26 ml to 41 ± 27 ml, p = 0.042) while VC width remained unchanged (5.4 ± 2.8 mm to 5.4 ± 2.8 mm, p = 0.41).CONCLUSIONSVena contracta imaging by TEE color flow mapping is an accurate marker of AR severity. Vena contracta width and VC area correlate well with RgF and RgV obtained by intraoperative flow probe. Vena contracta width appears to be less afterload-dependent than RgV

    An Integrated Process for Co-Developing and Implementing Written and Computable Clinical Practice Guidelines

    Get PDF
    The goal of this article is to describe an integrated parallel process for the co-development of written and computable clinical practice guidelines (CPGs) to accelerate adoption and increase the impact of guideline recommendations in clinical practice. From February 2018 through December 2021, interdisciplinary work groups were formed after an initial Kaizen event and using expert consensus and available literature, produced a 12-phase integrated process (IP). The IP includes activities, resources, and iterative feedback loops for developing, implementing, disseminating, communicating, and evaluating CPGs. The IP incorporates guideline standards and informatics practices and clarifies how informaticians, implementers, health communicators, evaluators, and clinicians can help guideline developers throughout the development and implementation cycle to effectively co-develop written and computable guidelines. More efficient processes are essential to create actionable CPGs, disseminate and communicate recommendations to clinical end users, and evaluate CPG performance. Pilot testing is underway to determine how this IP expedites the implementation of CPGs into clinical practice and improves guideline uptake and health outcomes

    Outcomes of critically ill solid organ transplant patients with COVID‐19 in the United States

    No full text
    corecore