43 research outputs found

    Development of a High Intensity Neutron Source at the European Spallation Source: The HighNESS project

    Full text link
    The European Spallation Source (ESS), presently under construction in Lund, Sweden, is a multidisciplinary international laboratory that will operate the world's most powerful pulsed neutron source. Supported by a 3M Euro Research and Innovation Action within the EU Horizon 2020 program, a design study (HighNESS) is now underway to develop a second neutron source below the spallation target. Compared to the first source, located above the spallation target and designed for high cold and thermal brightness, the new source will provide higher intensity, and a shift to longer wavelengths in the spectral regions of cold (2 /- 20 {\AA}), very cold (VCN, 10 /- 120 {\AA}), and ultra cold (UCN, > 500 {\AA}) neutrons. The core of the second source will consist of a large liquid deuterium moderator to deliver a high flux of cold neutrons and to serve secondary VCN and UCN sources, for which different options are under study. The features of these new sources will boost several areas of condensed matter research and will provide unique opportunities in fundamental physics. Part of the HighNESS project is also dedicated to the development of future instruments that will make use of the new source and will complement the initial suite of instruments in construction at ESS. The HighNESS project started in October 2020. In this paper, the ongoing developments and the results obtained in the first year are described.Comment: 10 pages, 10 figures, 14th International Topical Meeting on Nuclear Applications of Accelerators, November 30 to December 4, 2021, Washington, D

    Prototype of the novel CAMEA concept—A backend for neutron spectrometers

    Get PDF
    The continuous angle multiple energy analysis concept is a backend for both time-of-flight and analyzer-based neutron spectrometers optimized for neutron spectroscopy with highly efficient mapping in the horizontal scattering plane. The design employs a series of several upward scattering analyzer arcs placed behind each other, which are set to different final energies allowing a wide angular coverage with multiple energies recorded simultaneously. For validation of the concept and the model calculations, a prototype was installed at the Swiss neutron source SINQ, Paul Scherrer Institut. The design of the prototype, alignment and calibration procedures, experimental results of background measurements, and proof-of-concept inelastic measurements on LiHoF4 and h-YMnO3 are presented here

    Virtual experiments in a nutshell: Simulating neutron scattering from materials within instruments with McStas

    No full text
    We introduce Monte-Carlo methods for neutron scattering with step-by-step examples, using the McStas simulation tool. A selection of neutron instrument components are presented, as well as available sample scattering kernels. All these parts are assembled into more advanced instrument models in order to produce so-called virtual experiments, that is simulations which produce results comparable with experiments. Ways to couple such simulations with other simulation software including molecular dynamics are discussed
    corecore