8,205 research outputs found
Foerster resonance energy transfer rate and local density of optical states are uncorrelated in any dielectric nanophotonic medium
Motivated by the ongoing debate about nanophotonic control of Foerster
resonance energy transfer (FRET), notably by the local density of optical
states (LDOS), we study an analytic model system wherein a pair of ideal dipole
emitters - donor and acceptor - exhibit energy transfer in the vicinity of an
ideal mirror. The FRET rate is controlled by the mirror up to distances
comparable to the donor-acceptor distance, that is, the few-nanometer range.
For vanishing distance, we find a complete inhibition or a four-fold
enhancement, depending on dipole orientation. For mirror distances on the
wavelength scale, where the well-known `Drexhage' modification of the
spontaneous-emission rate occurs, the FRET rate is constant. Hence there is no
correlation between the Foerster (or total) energy transfer rate and the LDOS.
At any distance to the mirror, the total energy transfer between a
closely-spaced donor and acceptor is dominated by Foerster transfer, i.e., by
the static dipole-dipole interaction that yields the characteristic
inverse-sixth-power donor-acceptor distance dependence in homogeneous media.
Generalizing to arbitrary inhomogeneous media with weak dispersion and weak
absorption in the frequency overlap range of donor and acceptor, we derive two
main theoretical results. Firstly, the spatially dependent Foerster energy
transfer rate does not depend on frequency, hence not on the LDOS. Secondly the
FRET rate is expressed as a frequency integral of the imaginary part of the
Green function. This leads to an approximate FRET rate in terms of the LDOS
integrated over a huge bandwidth from zero frequency to about 10 times the
donor emission frequency, corresponding to the vacuum-ultraviolet. Even then,
the broadband LDOS hardly contributes to the energy transfer rates. We discuss
practical consequences including quantum information processing.Comment: 17 pages, 9 figure
Equine digital tendons show breedâspecific differences in their mechanical properties that may relate to athletic ability and predisposition to injury
Background Throughout the ages, human subjects have selected horse breeds for their locomotor capacities. Concurrently, tissue properties may have diversified because of specific requirements of different disciplines. Objectives The aim of this study was to compare the biomechanical properties of tendons with different functions between equine breeds traditionally selected for racing or sport. Study design This study used ex vivo tendons and compared the mechanical properties of the common digital extensor tendon (CDET) and superficial digital flexor tendon (SDFT) between racehorses (Thoroughbred [TB]) and sports horses (Friesian Horse [FH], Warmblood [WB]). Methods The SDFT and CDET of FH (n = 12), WBs (n = 12) and TBs (n = 8) aged 3-12 years were harvested. The cross sectional area (cm(2)), maximal load (N), ultimate strain (%), ultimate stress (MPa) and elastic modulus (MPa) were determined and tested for significant differences between the breeds (P<0.05). Results The SDFT from WB horses had a significantly lower elastic modulus than TB horses and failed at a higher strain and load than both FHs and TBs. The mechanical properties of the CDET did not differ between breeds. In agreement with previous studies, the CDET failed at a higher stress and had a higher elastic modulus than the SDFT and, for the WB group of horses only, failed at a significantly lower strain. Interestingly, the mode of failure differed between breeds, particularly with respect to the FHs. Main limitations The exercise history of horses used in this study was unknown and the age-range was relatively large; both these factors may have influenced the absolute properties reported in this study. Conclusions This study shows for the first time that mechanical properties of the SDFT differ between breeds. These properties are likely to be related to selection for high-speed vs. an extravagant elastic gait and may be an important indicator of performance ability. The is available in Spanish - see Supporting Informatio
Optimal control of light propagation through multiple-scattering media in the presence of noise
We study the control of coherent light propagation through
multiple-scattering media in the presence of measurement noise. In our
experiments, we use a two-step optimization procedure to find the optimal
incident wavefront. We conclude that the degree of optimal control of coherent
light propagation through a multiple-scattering medium is only determined by
the number of photoelectrons detected per single speckle spot. The prediction
of our model agrees well with the experimental results. Our results offer
opportunities for imaging applications through scattering media such as
biological tissue in the shot noise limit
Light propagation and emission in complex photonic media
We provide an introduction to complex photonic media, that is, composite
materials with spatial inhomogeneities that are distributed over length scales
comparable to or smaller than the wavelength of light. This blossoming field is
firmly rooted in condensed matter physics, in optics, and in materials science.
Many stimulating analogies exist with other wave phenomena such as sound and
seismology, X-rays, neutrons. The field has a rich history, which has led to
many applications in lighting, novel lasers, light harvesting, microscopy, and
bio optics. We provide a brief overview of complex photonic media with
different classes of spatial order, varying from completely random to
long-periodically ordered structures, quasi crystalline and aperiodic
structures, and arrays of cavities. In addition to shaping optical waves by
suitable photonic nanostructures, the realization is quickly arising that the
spatial shaping of optical wavefronts with spatial light modulators
dramatically increases the number of control parameters. As a result, it is
becoming possible for instance to literally see through completely opaque
complex media. We discuss a unified view of complex photonic media by means of
a photonic interaction strength parameter. This parameter gauges the
interaction of light with any complex photonic medium, and allows to compare
complex media from different classes for similar applications.Comment: 8 pages, 2 figures, Light Localisation and Lasing: Random and
Quasi-Random Photonic Structures, Eds. M. Ghulinyan and L. Pavesi, (Cambridge
Univ. Press, Cambridge, 2015) Ch. 1, p.
Discretionary monetary policy in the Calvo model
We study discretionary equilibrium in the Calvo pricing model for a monetary authority that chooses the money supply. The steady-state inflation rate is above eight percent for a baseline calibration, and it varies non-monotonically with the degree of price stickiness. If the initial condition involves inflation higher than steady state, discretionary policy generates an immediate drop in inflation followed by a gradual increase to the steady state. Unlike the two-period Taylor model, discretionary policy in the Calvo model does not accommodate predetermined prices in a way that inevitably leads to multiple private-sector equilibria.
Design of a 3D photonic band gap cavity in a diamond-like inverse woodpile photonic crystal
We theoretically investigate the design of cavities in a three-dimensional
(3D) inverse woodpile photonic crystal. This class of cubic diamond-like
crystals has a very broad photonic band gap and consists of two perpendicular
arrays of pores with a rectangular structure. The point defect that acts as a
cavity is centred on the intersection of two intersecting perpendicular pores
with a radius that differs from the ones in the bulk of the crystal. We have
performed supercell bandstructure calculations with up to
unit cells. We find that up to five isolated and dispersionless bands appear
within the 3D photonic band gap. For each isolated band, the electric-field
energy is localized in a volume centred on the point defect, hence the point
defect acts as a 3D photonic band gap cavity. The mode volume of the cavities
resonances is as small as 0.8 (resonance wavelength cubed),
indicating a strong confinement of the light. By varying the radius of the
defect pores we found that only donor-like resonances appear for smaller defect
radius, whereas no acceptor-like resonances appear for greater defect radius.
From a 3D plot of the distribution of the electric-field energy density we
conclude that peaks of energy found in sharp edges situated at the point
defect, similar to how electrons collect at such features. This is different
from what is observed for cavities in non-inverted woodpile structures. Since
inverse woodpile crystals can be fabricated from silicon by CMOS-compatible
means, we project that single cavities and even cavity arrays can be realized,
for wavelength ranges compatible with telecommunication windows in the near
infrared.Comment: 11 figure
- âŠ