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Summary

Background: Throughout the ages, human subjects have selected horse breeds for their locomotor capacities. Concurrently, tissue properties may

have diversified because of specific requirements of different disciplines.

Objectives: The aim of this study was to compare the biomechanical properties of tendons with different functions between equine breeds

traditionally selected for racing or sport.

Study design: This study used ex vivo tendons and compared the mechanical properties of the common digital extensor tendon (CDET) and superficial

digital flexor tendon (SDFT) between racehorses (Thoroughbred [TB]) and sports horses (Friesian Horse [FH], Warmblood [WB]).

Methods: The SDFT and CDET of FH (n = 12), WBs (n = 12) and TBs (n = 8) aged 3–12 years were harvested. The cross sectional area (cm2), maximal load

(N), ultimate strain (%), ultimate stress (MPa) and elastic modulus (MPa) were determined and tested for significant differences between the breeds (P<0.05).
Results: The SDFT from WB horses had a significantly lower elastic modulus than TB horses and failed at a higher strain and load than both FHs and

TBs. The mechanical properties of the CDET did not differ between breeds. In agreement with previous studies, the CDET failed at a higher stress and

had a higher elastic modulus than the SDFT and, for the WB group of horses only, failed at a significantly lower strain. Interestingly, the mode of failure

differed between breeds, particularly with respect to the FHs.

Main limitations: The exercise history of horses used in this study was unknown and the age-range was relatively large; both these factors may have

influenced the absolute properties reported in this study.

Conclusions: This study shows for the first time that mechanical properties of the SDFT differ between breeds. These properties are likely to be related

to selection for high-speed vs. an extravagant elastic gait and may be an important indicator of performance ability.

The Summary is available in Spanish – see Supporting Information
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Introduction

Horses have been kept for their impressive locomotor capacities, which

developed as a result of limb and tendon elongation in Eohippos 50 million
years ago. In 1793, a registry for the breeding of racing Thoroughbreds

(TB) was documented. The Friesian horse (FH) is also an ancient pure-bred
breed (founded in 1879), whereas the more recently established

Warmblood (WB) horses are a mixture of local agricultural working horses
and Thoroughbreds. These different breeds can easily be distinguished by

eye as they differ in their conformation. It is not known, however, whether
skeletal tissues, such as the digital tendons that play an important role in

gait and efficiency of locomotion, also have been altered by selective

breeding. The standards of the Friesian studbook require that FHs trot with
their heads held high on an upright neck, lifting their front limbs in an

upward direction, while WBs move with a lower rounded head carriage
and a forward step. These are different kind of gaits when compared with

that required by the galloping Thoroughbred.
Tendons are dense, regular connective-tissue structures comprised of a

hierarchical arrangement of increasingly larger subunits of collagen [1–7],
which are embedded in a glycoprotein matrix [8]. Energy-storing tendons,

like the superficial digital flexor tendon (SDFT), release elastic energy stored
under high tensile stress and strain, resulting in the tendon acting as an

elastic spring [9–13]. Positional tendons, like the common digital extensor

tendon (CDET), experience lower strains, acting predominantly to transmit

muscular force; they need to be relatively inextensible under physiological

loads [14–18].

Competition horses suffer from damage to tendons and ligaments
relatively often; the SDFT and suspensory ligament are most frequently

affected [12,13,19]. Overtraining, acute trauma and an unbalanced
conformation of the horse, as well as tendon tissue quality all play an

important role in the occurrence of tendon and ligament injuries. The type of
sport and the actual performance level are associated with different

anatomical sites of tendon injuries [19]. Recent studies observed that FHs
had significantly fewer SDFT injuries than Standardbred horses, but

significantly more suspensory ligament injuries than WB horses [20].
Therefore, in this study, tendon biomechanical properties were compared

between spring-like and positional-type tendon representatives from the TB,

FH and WB breeds to determine whether differences could originate from
selection for specific locomotor capacities. The hypothesis is that the SDFT in

FH and WB horses will show a less stiff nature, compared to the TB horses.

Materials and methods

Harvested tendons

The distal parts of the forelimbs of 12 WB horses, 12 FH and 8 TB horses
were obtained from an abattoir and a veterinary clinic where the horses

were subjected to euthanasia for reasons other than tendon injuries. The
age of the horses ranged from 3 to 12 years.

The forelimbs were frozen and stored at �20°C until the collection of
the tendon samples. For the collection of the tendon samples, the limbs
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were thawed in water of 15°C. The tendon samples of the CDET and SDFT

were obtained from the distal carpus region to metacarpophalangeal
region, resulting in tendon samples with a length of approximately 20 cm.

The tissue samples were stored frozen at �20°C and transported on dry
ice to the testing laboratory.

Biomechanical testing

Measurement of cross-sectional area (CSA): The CSA was measured
using a technique developed by Goodship and Birch [23]. Aqueous rapid-

curing alginate dental impression paste was used to create a mould of the
mid-metacarpal region of the tendon (Fig 1). A slit was cut through the

mould along the tendon and the tendon was removed. A transverse
section was taken from the alginate mould and photographed alongside a

calibration scale. Digital images were used to measure the area of the hole
left by the tendon in the paste using image analysis softwarea in an

automated procedure. The results are given in cm2.

Tendon mechanical testing: The biomechanical properties of the

tendons were determined using a hydraulic materials testing machineb.
Cryoclamps cooled with liquid CO₂ were used to fixate the tendons in a

vertical position. The distance between the clamps was 7–10 cm
depending on the length of the tendon. The tendons were preloaded with

100 N (SDFT) or 25 N (CDET) (approximately 1–2% of the failure load) and
the distance between the frost lines was measured to determine the

effective gauge length. Tendons were preconditioned to reach a steady
state using 20 cycles of a sine-wave load between 0 and 5.25% strain at a

frequency of 0.5 Hz, returning back to the preload [15]. Following

preconditioning, the preload was removed and the tendons were loaded
using a ramp load to failure at a strain rate of 80%/s. Extension and force

data were collected at 4 ms intervalsc. The location of tendon rupture (top,
middle, bottom) and mode of failure were recorded. The resting length

was determined from the data by identifying the point at which load on the
tendon began to show a steady increase. A stress/strain curve was plotted

and the point at which the linear gradient of the curve reached a maximum
was identified. Two data points on either side of the maximum were

included to determine the elastic modulus. The force at failure (N), ultimate

stress (MPa), failure strain (%) and linear elastic modulus (MPa; maximum of
stress/strain) were calculated for each tendon.

Data analysis

The data were analysed for statistical differences using SPSS (version 24)d.

A linear mixed model was used including the horse as a subject variable

with the tendons and breed as fixed factors. The individual subgroups
were compared separately using a Bonferroni post hoc test, if the

breed 9 tendon showed an interaction. To test for a significant difference
in age between the groups, an ANOVA test was used. A Chi-square test

was performed to determine significant differences in the mode of failure.
The significance level was set at P<0.05 for all statistical analyses. All

results are given as mean � standard deviation (s.d.).

Results

The data were retrieved from all tendons and the differences between

SDFT and CDET and differences between the three breeds are shown in
Table 1. There was no significant difference in age between the three

breeds (WB 8.83 years � 2.40, FH 8.75 years � 2.59, TB
7.0 years � 2.72).

Cross-sectional area

The SDFT had a significantly larger CSA than the CDET (P<0.001). There was
no significant difference in the CSA of the SDFT between the breeds. For

the CDET, the CSA of WBs was significantly larger than that of TBs
(P = 0.009).

Maximal load

The SDFT showed a significantly greater maximal load than the CDET
(P<0.001). There was also a significant difference between the breeds. The

maximal load of the WB SDFT was significantly greater (P = 0.02) than that
of the FHs and TBs. The CDET showed no significant difference between

the breeds. The tendons of WB horses showed the greatest maximal load,
followed by those of FHs and TBs.

Ultimate strain

There was no significant difference in ultimate strain between the SDFT and
CDET for FHs and TBs. In WBs, the ultimate strain of the SDFT was

significantly higher than that of the CDET (P<0.001). The ultimate strain of
the SDFT also significantly differed between the breeds. The WB SDFT had

a significantly higher (P = 0.02) ultimate strain than that of the FHs and
TBs. There was no significant difference for the CDET between the different

breeds.

Ultimate stress

The CDET had a significantly higher ultimate stress level than the SDFT

(P = 0.006). There were no significant differences between the different
breeds for either tendon type. As seen in Table 1, the ultimate stress of the

FH CDET varied widely within the group.

Elastic modulus

The SDFT had a significantly lower elastic modulus than the CDET
(P = 0.004). The elastic modulus did not differ significantly between breeds

for the CDET, however, the SDFT had a significantly higher elastic modulus

in the TBs compared to the WBs (P = 0.009). The elastic modulus of the
SDFT in FHs did not differ to the TBs or WBs. Typical stress/strain curves

for differences between the SDFT and CDET and differences between the
three breeds are shown in Figure 2.

Region of rupture

The mode of failure appeared to differ between breeds. In the TBs all

tendons ‘snapped’ giving a clean break (Fig 3, Supplementary Item 1). In the

FHs, the tendon failure occurred mostly by sliding of fascicles/fibres relative
to each other (Fig 3, Supplementary Item 2). This difference was significantly

different between the breeds (SDFT, P = 0.05; CDET, P = 0.04, Fig 4).
Fig 1: An alginate paste mould of a tendon using a calibration scale to calculate

the cross sectional area (CSA) of the tendon.
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Discussion

The results of this study are in agreement with previous studies showing a
difference in mechanical properties between the energy-storing SDFT and

positional CDET [15,18]. The SDFT showed a significantly lower material

stiffness and the tendon tissue failed at a lower force compared to the
CDET tissue and this was consistent across all three breeds studied.

Interestingly, and partially supporting the hypothesis, this study shows
for the first time to our knowledge, a breed-specific difference between

tendons. These differences were seen in the SDFT and were not apparent
in the less specialised CDET, other than a larger CSA of the CDET in WB

horses. Furthermore, these differences were most exaggerated when
comparing the TB horses with the WBs. In WB horses the SDFT had a

significantly lower elastic modulus and failed at a significantly higher strain
than the SDFT in the TB group of horses. Previous studies using a mix of

horse breeds [15,18] have shown a significantly higher ultimate strain for

the SDFT compared to the CDET, however, in the present study this
difference was only significant for the WB horses.

The higher elastic modulus of the TB SDFT is a characteristic of a stiffer
tendon and may relate to the type of activity racehorses undertake.

Racehorses are required to exercise regularly at high speeds in a mainly
straight line during training and racing. The relatively stiff tendons

compared to sports horse breeds can transfer the muscle forces quicker
and more efficiently, so more elastic energy can be stored within a shorter

ground contact period while keeping an efficient propulsive phase [15,24–

26].
A lower elastic modulus resulting in a less stiff SDFT in the WB horses

supports the hypothesis that sports horse breeds have more compliant
elastic tendons to fulfil their locomotion requirements. Sports horses are

trained differently at much lower speeds, therefore, their tendons require
different properties to adapt to these types of exercise. The take-off for

jumping a fence, for example, is relatively slow, which gives the more
easily extended tendon time to store and release energy. Besides that,

jumping a fence causes (extreme) hyperextension of the metacarpo-/
metatarso-phalangeal joints. Landing after a jump significantly increases the

forelimb ground reaction force compared to normal canter [27] and the

tendons of the forelimbs are subjected to considerable strain and
repetitive loading [28]. High-level dressage horses are asked to collect their

strides, leading to a great proportion of their bodyweight being carried by
the hindlimbs. This leads to an increase in stance duration, which might be

exaggerated during specific movements such as canter pirouettes, leading
to soft tissue injuries [29]. These findings support the hypothesis that

different tendon properties are required to perform the specific
movements in different sport activities.

Although there is now considerable evidence to support a difference in

biomechanical properties between functionally distinct tendons, the
mechanisms conferring these different properties on the tendon are less

well understood. The energy storing SDFT has been shown to have a less
stiff interface between the tendon fascicles than the CDET, enabling a

greater fascicle sliding that could account for increased failure strain in the
SDFT [18,30]. It may be that this adaptation is amplified in the SDFT of WB

horses accounting for the lower elastic modulus and higher ultimate strain

reported in this study. Differences between the SDFT and CDET in

biochemical composition have also been reported [16]. The SDFT has a
higher water content, higher sulphated glycosaminoglycan content, smaller

collagen fibril diameters and a different collagen crosslink profile when
compared to the CDET [16]. Levels of pyrrole, although a minor crosslink in

TABLE 1: Biomechanical variables (mean � s.d.) in three breeds of horses

Biomechanical parameters Tendon Warmblood (n = 12) Friesian (n = 12) Thoroughbred (n = 8)

CSA (mm2) SDFT 110.7 � 27.5 93.4 � 16.9 89.0 � 26.3

CDET 37.0 � 7.71 31.2 � 2.8 26.2 � 7.3

Maximal load (N) SDFT 12606 � 19361,2 10101 � 1583 9982 � 3446

CDET 5583 � 971 4939 � 976 4332 � 1229

Ultimate strain (%) SDFT 32.6 � 6.01,2 26.4 � 4.1 25.3 � 4.6

CDET 20.5 � 4.7 21.4 � 5.6 21.5 � 4.5

Ultimate stress (MPa) SDFT 116.9 � 17.8 110.4 � 20.6 121.4 � 18.6

CDET 153.3 � 21.4 160.5 � 38.7 171.9 � 50.2

Modulus (stress/strain MPa) SDFT 397.3 � 87.11 507.7 � 141.4 595.7 � 100.1

CDET 971.0 � 131.1 929.6 � 129.3 1012.6 � 163.8

Bold: superficial digital flexor tendon (SDFT) significantly different from common digital extensor tendon (CDET; P<0.05).
1Denotes a significant difference compared with Thoroughbred horses (P<0.05).
2Denotes a significant difference relative to Friesian horses (P<0.05).
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Fig 2: a) Typical stress/strain curve of a WB SDFT (orange) and CDET (blue). b)

Typical stress/strain curve of the SDFT of the three breeds (WB = blue;

FH = orange; TB = grey).
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tendon, show a significant positive correlation with tendon yield stress,
ultimate stress and elastic modulus in the SDFT [12]. Furthermore, the rate

of turnover of the collagen and noncollagenous components differs
significantly between the SDFT and CDET tissue [31]. The link between

these matrix differences and biomechanical behaviour is not yet fully
understood but may also operate within the SDFT from different breeds.

The breed-specific differences in tendon properties reported in our study
may also contribute towards the different pattern of tendon injuries seen in

different disciplines. In TB racehorses the SDFT is most often injured. In a

study of National Hunt racehorses over two seasons of racing the SDFT
accounted for 89% of all tendon and ligament injuries [32]. In elite event

horses (intermediate level and above), where TB horses are most

numerous, a study of orthopaedic injuries showed that injuries are most
likely to be to the SDFT [19]. It may be that lower ultimate strains values

recorded in our study for the TB SDFT predispose to overstrain injury. In
contrast, in dressage horses where WB horses dominate, suspensory

ligament injuries in the hindlimbs are more common [19,22,33,34]. There is
also a reported increased risk of suspensory ligament injuries in FH [20,21],

which besides the required ‘dressage’ movements, may also be amplified
by the already hyperextended position of the metacarpophalangeal joints

in FH [35–37]. Although these studies report significant differences in

tendon injuries related to their locomotor performance, none of the studies
investigated differences in biomechanical tendon properties that could

possibly lead to these injuries.

a) c)

b) d)

Fig 3: Photographic illustration of the difference in breaking mode of Friesian (top; a,c) and Thoroughbred (bottom; b,d) superficial digital flexor tendons (SDFT). Tendons

are shown at the point of rupture (left; a,b) and following rupture as the clamps continue to move apart (right; c,d). The Friesian tendon ruptured in the core, leaving the

outer fibres stretched but intact, whereas the Thoroughbred tendons showed an almost clean break.
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An unexpected finding but one that might be highly relevant to tendon
injury in the FH, was the difference in the way tendons ruptured in the

failure test. The FH tendons tended to undergo excessive stretching with
fibres sliding past each other rather than showing a clean break as seen in

the TB tendons and the majority of WB tendons. There is evidence from
studies investigating aortic rupture and megaoesophagus in FHs to suggest

a genetic mutation that causes collagen in tissues to clump and become
disorganised [36–38]. A different distribution of collagen in FH tendons

might be an explanation for the difference in rupture pattern compared

with the other breeds.
The results of the study are intriguing, however, there are a number of

limitations that should be considered. Although all horses were skeletally
mature, the age-range studied was relatively large. Furthermore, the

activity type and level of the horses in the study was unknown. Both these
factors may have influenced the tendon properties reported in this study.

In conclusion, the results of this study have revealed an exciting and
previously unrecognised specialisation of the biomechanical properties of

the SDFT in horses bred for high speed and stamina vs. those bred for

power and an extravagant elastic gait. We consider that it is most likely
that these properties have evolved through selective breeding for

performance over the years. However, it is intriguing to speculate as to
whether the SDFT adapts further following exercise and training in a

specific discipline and whether this ability to adapt relates to susceptibility
to injury. Furthermore, how well evolved or adapted the tendons are for a

specific function and discipline may be related to performance and could
be used as a selection tool. Unraveling the (genetic) mechanism for these

differences is important as it may allow an indirect assessment of tendon
mechanical properties in the future.
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