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We theoretically investigate the design of cavities in a three-dimensional (3D) inverse woodpile photonic
crystal. This class of cubic diamondlike crystals has a very broad photonic band gap and consists of two
perpendicular arrays of pores with a rectangular structure. The point defect that acts as a cavity is centered on
the intersection of two intersecting perpendicular pores with a radius that differs from the ones in the bulk of the
crystal. We have performed supercell band structure calculations with up to 5 × 5 × 5 unit cells. We find that
up to five isolated and dispersionless bands appear within the 3D photonic band gap. For each isolated band, the
electric-field energy is localized in a volume centered on the point defect, hence the point defect acts as a 3D
photonic band gap cavity. The mode volume of the cavities resonances is as small as 0.8 λ3 (resonance wavelength
cubed), indicating a strong confinement of the light. By varying the radius of the defect pores we found that only
donorlike resonances appear for smaller defect radius, whereas no acceptorlike resonances appear for greater
defect radius. From a 3D plot of the distribution of the electric-field energy density we conclude that peaks of
energy are found in sharp edges situated at the point defect, similar to how electrons collect at such features. This
is different from what is observed for cavities in noninverted woodpile structures. Since inverse woodpile crystals
can be fabricated from silicon by CMOS-compatible means, we project that single cavities and even cavity arrays
can be realized, for wavelength ranges compatible with telecommunication windows in the near infrared.
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I. INTRODUCTION

Many efforts are currently proceeding in the blossoming
field of nanophotonics to trap light in a tiny volume in
space [1,2]. Several classes of devices are pursued including
micropillar and ring cavities [3,4], point defects in two-
dimensional photonic crystals [5,6], and plasmonic structures,
such as metallic antennas [7,8]. Nanophotonic resonators have
many interesting potential applications, such as the trapping
or slowing down of photons [1], sensing [9], a controlled en-
hancement of spontaneous emission [10], as well as advanced
cavity quantum electrodynamic control [11–13]. Linear arrays
of wavelength-scale optical cavities are pursued for their
function as waveguides with tailored properties [14,15].

Of particular interest are cavities embedded in three-
dimensional (3D) photonic crystals with a complete photonic
band gap [16,17]. In the frequency range of the band gap
light is forbidden to exist throughout the crystal and for
all polarizations, which notably leads to the inhibition of
spontaneous emission [18]. By introducing a point defect into
the crystal structure, the lattice symmetry is locally broken,
and a resonance appears in the band gap [19–22], in an
analogy to localized electronic defect states in a semiconductor
[23,24]. A 3D photonic band gap cavity is considered to be
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an ultimate tool to control light down to the single-photon
level for several reasons. First, since the confinement is truly
three-dimensional, there is no direction or dimension wherein
the light will naturally leak as is the case in, e.g., a pillar or
a 2D photonic crystal. Second, since in photonic band gap
crystals the imaginary part of the dielectric constant of the
constituent materials is minimal, the absorption of light is
minimal, allowing very long storage times of light. Third,
since a 3D photonic band gap effectively shields an embedded
quantum system, such as an excited quantum dot, from vacuum
fluctuations, an array of 3D cavities has great potential to
control collective quantum systems including qubits [25].

It is a major challenge in nanotechnology to realize optical
cavities in 3D crystals [26,27], since a controlled deviation
from the periodic crystal structure must be realized deep
inside the nanostructure. One demonstrated solution to this
challenge are cavities in woodpile structures made with a
layer-by-layer method [28–31]. In this method crystals are
made by sequential stacking of layers where the central
layer is modified to contain a point defect. Unfortunately
layer-by-layer stacking suffers from random fluctuations in
the alignment. As a result the width of the photonic band
gap is limited, hence the density of the optical states in the
gap becomes filled with undesired states, thereby limiting the
cavity quality factor. In a second method an optical cavity
was proposed by an intriguing combination of a planar unit
cell modulation (planar defect) and a waveguide (line defect)
[32,33]. Relevant and interesting methods to fabricate cavities
in opal-based and inverse-opal-based photonic crystals has
been reported in Refs. [34–37].

In this paper, we propose and investigate a straightforward
approach to realize an optical cavity in an inverse woodpile
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photonic band gap crystal [38]. These photonic band gap
crystals have a symmetry similar to how carbon atoms are
arranged in a diamond crystal [38]. Diamondlike photonic
crystals stand out for their broad band gaps [39], as a result of
which an embedded cavity is optimally shielded. In addition,
a broad photonic band gap offers robustness to unavoidable
disorder and to inadvertent fabrication deviations [40,41].
Among the diamondlike crystals, the inverse woodpile crystals
stand out because they are relatively straightforward to fabri-
cate by etching two perpendicular arrays of pores in a high-
refractive index material such as silicon [42–45], as illustrated
in Fig. 1. Recent work on silicon inverse woodpile crystals
has demonstrated the experimental signature of a broad 3D
photonic band gap in reflectivity [46], and a strong inhibition
of spontaneous emission of embedded quantum emitters [18].
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FIG. 1. (Color online) Structure of an inverse woodpile photonic
crystal with a point defect. (a) Oblique view of a section of the
crystal with defect. The radius R of the pores and the orthorhombic
lattice parameters a and c are indicated. The red circles emphasize
two pores with a radius R‘ different from the bulk radius R. Here
the defect pores are smaller than the bulk pores: their radius R‘ is
equal to 0.5 R. (b) Vertical cross section through the center of a point
defect cavity. The used x,y,z-coordinate system is shown in gray.
(c) Horizontal cross section through the center of a point defect. The
two intersecting defect pores result in a region with an excess of
high-index material, indicated by the arrows.

(a) (b)

FIG. 2. (Color online) (a) Band structure calculated for a perfect
inverse woodpile crystal. The dielectric constant is εSi = 12.1, typical
for silicon. The 3D photonic band gap is shown as a red bar between
reduced frequencies 0.510 and 0.646. For ease of illustration, all
allowed frequencies outside the original band gap are depicted in gray.
(b) Band structure calculated for two intersecting defect pores with
radius R‘ = 0.5R, using a 3×3×3 supercell. The abscissa indicates the
wave vector between the eight high-symmetry points of the Brillouin
zone of the orthorhombic lattice [41]. Many bands appear within
the original band gap. The five indicated flat bands are isolated and
appear to confine light as cavity resonances.

II. STRUCTURE OF CRYSTAL AND POINT DEFECT

Figure 1 illustrates the structure of an inverse woodpile
photonic crystal. The orthorhombic lattice constants are a and
c, and the radius of an unperturbed pore is R. If the ratio of
the lattice constants equals a/c = √

2, the crystal is cubic with
a diamondlike symmetry [38]. When the pore radius is tuned
to R/a = 0.24, the 3D photonic band gap has a very broad
bandwidth as shown in Fig. 2(a), with a relative bandwidth
�ω/ωc = 25.3%, with �ω the frequency width of the band
gap, and ωc its center frequency [41,42].

We define three-dimensional cavities in these inverse
woodpile crystals by introducing a point defect in the bulk
of the crystal consisting of two intersecting perpendicular
defect pores with a radius R′ that differs from the bulk
pore radius R. A visualization of the defect is shown in
Fig. 1. This intersection is the position where we expect
the electric-field energy to be localized. We will discuss the
confinement of light in such a cavity and explore for which
defect radius R′ optimal confinement is achieved, quantified
by a minimal mode volume Vmode for the cavity resonances.
The benefits of the cavity proposed here are twofold: first,
the required nanostructures can be realized with existing
CMOS-compatible silicon nanofabrication techniques [44,45],
and second, no post-production steps are required to obtain a
single cavity or even an array of cavities.

III. CALCULATION METHOD

We have used the well-known MIT photonic bands package
to calculate the photonic bandstructures (frequency ω versus
wave vector �k) and the spatial electric-field energy density
ε|E|2(�r) distributions using the plane-wave expansion [47].
To define an inverse woodpile crystal, an orthorhombic unit
cell is used, as shown in Fig. 1. Throughout this paper, the
dielectric constant is taken to be εSi = 12.1, typical for silicon.
More details on plane-wave calculations on inverse woodpiles
are given in Ref. [41], and in Appendix A we discuss the
resolution of the present calculations.
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To introduce a point defect as a cavity and increase its
surrounding unperturbed volume, we define the crystal by
means of a supercell [48]. Since a plane-wave expansion
assumes the structure under study to be infinitely extended,
the supercell is replicated infinitely in all three dimensions.
Since the supercell under consideration has no surrounding
vacuum, a limitation of the method is that a cavity quality factor
cannot be calculated precisely. To verify that the supercell
method yields correct results, we have compared the results
for a 3 × 3 × 3 supercell on a perfect crystal without point
defect to the results obtained with a conventional single unit
cell [41,42]. We found that these calculations agree well, see
Appendix A, thus validating the supercell method.

A 3 × 3 × 3 supercell consists of a total of 27 orthorhombic
unit cells. The two perpendicular defect pores with a different
radius R′ are defined across the entire supercell, that is, in two
neighboring unit cells in each direction. The resulting point
defect is centered at the intersection of the two defect pores.
Therefore, in the infinite structure considered in plane-wave
calculations, a defect occurs every three unit cells in each
dimension. The infinite repetition of cavities means de facto
that we are calculating the properties of an array of weakly
coupled cavities. It is reasonable to expect that with a larger
supercell, the properties for a single cavity are approached.
Therefore, we have also performed time-intensive calculations
with a 5 × 5 × 5 supercell, containing 125 unit cells, where the
point defect is repeated every five unit cells in each dimension.

IV. DISPERSIONLESS BANDS AND LOCALIZED
FIELD ENERGY

Using a 3 × 3 × 3 supercell, we have calculated the band
structures of an inverse woodpile crystal with two intersecting
defect pores. In Fig. 2(b) the band structure is shown for R′ =
0.5R. A multitude of bands appears within the photonic band
gap of the perfect crystal. Of particular interest are the five
lowest bands in the band gap. Each of these bands is isolated
in frequency from all other bands. Since each band has nearly
the same frequency ωi(i = 1, . . . ,5) at all wave vectors �k, it
is reasonable by Fourier arguments that the frequency ωi is
localized in space �r . Therefore, the five bands likely confine
light, as cavity resonances. We now turn to a detailed study of
the five cavity resonances and their development as a function
of defect radius R′.

Figure 3 shows the electric-field energy distribution for the
third dispersionless band in the band gap at reduced frequency
(ωa/2πc) = 0.53, with c the speed of light. For clarity, very
low-energy densities (ε|E|2 < 2) have been omitted.1 A strong
concentration of the electric-field energy density is observed
at the center of the supercell, where the two defect pores
intersect. The confinement of the electric field energy further
confirms that the five dispersionless bands in Fig. 2(b) are
cavity resonances. Additionally, in Fig. 3, there is no significant
energy density along any of the two defect pores. This result

1Omitting energy densities less than (ε|E|2 < 2) corresponds to a
removal of only 7.5% of the total electric-field energy density in
the plots. The remaining energy density of 92% that is visualized
occupies as little as 4% of the total volume of the supercell.
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FIG. 3. (Color online) Three-dimensional electric-field energy
density distribution of resonance 3 calculated on a 5×5×5 supercell
with R‘ = 0.5R. The cells are indicated along the axes in units of
lattice spacings a and c. The used coordinate system is shown in
gray. For clarity, cells with very low energy densities (ε|E|2 < 2)
have been omitted.

indicates that the defect pores do not act as waveguides through
which light leaks out of the cavity. At this point we conclude
that a point defect in an inverse woodpile crystal centered on
two intersecting defect pores yields a 3D photonic band gap
cavity.

In Figs. 4 and 5 we show different cross sections of the
photonic crystal with defect, taken perpendicular to the 100
and 010 directions, respectively. Figures 4(a) and 5(a) show
a cross section of the distribution of high index of refraction
material in the supercell. The pores can be easily identified,
as well as the silicon backbone of the crystal structure. For
the two respective directions, Fig. 4(b), 4(c) and 5(b), 5(c) are
identical cross sections of the calculated distribution of the
electric-field energy density and used to compare the positions
of high energy with the distribution of high-index material in
Figs. 4(a) and 5(a). The images confirm that at the position of
the point defect, high electric-field energy densities are present,
similar to what is described for woodpilelike structures [22].
Taking a closer look at these figures, we see that high densities
of electric-field energy are present in a number of sharp tips in
the point defect region. It appears that light is collected there,
similar to the electric field enhancement seen in the lighting
rod effect and used in field emission cathodes.

V. OPTIMAL PORE RADIUS

To explore the conditions for confinement of light, we have
varied the radius R′ of the two intersecting defect pores in
the inverse woodpile crystals. Figure 6(a) shows the evolution
of the frequency of each cavity resonance in the photonic
band gap. The frequency of a resonance is taken as the
average between the lowest and highest frequency of each
dispersionless band shown in Fig. 2. For convenience, we plot
the ordinate with decreasing defect-pore radius, to obtain an
ordinate that increases with the volume of the point defect,
and R′/a = 0.24 corresponds to a perfect crystal. A defect
radius of R′/a = 0 corresponds to zero defect pore radius,
i.e., defect pores that are completely filled with high-index
material. Figure 6(a) shows that the first two resonances appear
near reduced frequency (ωa/2πc) = 0.6 at a defect pore radius
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FIG. 4. (Color) (a) Cross section of the distribution of high-index material through the center of the defect, perpendicular to a 100 direction.
The axes indicate the extent of the supercell in units of lattice spacings a and c. The arrows point to an area with silicon and to a pore. The two
intersecting defect pores result in a region with an excess of high-index material, visible at the center. (b) and (c) are identical cross sections of
the electric-field energy density distribution ε|E|2. The coordinate system is shown in gray in (c). The blue dashed lines indicate the overlap
with dielectric distribution in (a). The blue section in (a) indicates that the high-energy density is found at the point defect. (d) Projection of the
electric-field energy density distribution through the whole supercell. Multiple periodically spaced cross sections have been taken through the
entire supercell and projected on top of each other. All calculations were performed on a 5 × 5 × 5 supercell with R′ = 0.5R. The color bar in
(c) also holds for (b) and (d).

of R′/a = 0.18. Here c is the speed of light. At a defect pore
radius of R′/a = 0.13, a third resonance appears below the first
two, and even a fourth and a fifth resonance. The resonances
vanish in the “valence bands” below the band gap at defect
radius near 0.07. Thus, there are no donor resonances in the
band gap anymore in the limit of completely filled defect pores
(R′/a = 0).

With increasing defect volume, the frequencies of all
resonances decrease, consistent with results for increasing
defects in 2D arrays of rods [21,22] and in 3D direct
woodpile structures [29]. The decrease is physically intuitive
since the resonances derive from an increasing volume of
high-refractive-index material. By extrapolating the resonance
frequencies to small defect volume, it is apparent that the
resonances have split off from the top of the photonic band
gap. Based on the analogy between a photonic band gap and a
semiconductor band gap, bands above the photonic band gap
are referred to as “conduction bands”. A bound state splitting
off from a semiconductor’s conduction band is a donor level,
hence the observed resonances in the photonic band gap are
referred as “donor resonances” [19,22].

It is remarkable that the appearance of donor resonances in
Fig. 6(a) occurs at a considerable threshold in defect radius.
Such a threshold is attributed to the fact that a certain minimum
dielectric volume is required to sustain a standing wave in 3D.
As a result, the resonances appear at frequencies deep into
the gap, as “deep donors”. This behavior of donors in inverse
woodpile crystals differs markedly from the occurrence of
“shallow” donor resonances in direct woodpile crystals [29],
and in fcc crystals with nonspherical atoms [19]. We surmise
that the difference is a result of the field distribution of the
cavity resonances. In Sec. IV above, we have seen that in
the inverse woodpile cavity the field maximum appears on
the sharp corners of the dielectric. Such sharp corners only
appear when the defect radius differs considerably from the
unperturbed radius, corresponding to a large detuning from
the upper band edge, hence a “deep donor”. In contrast, the
cavity field distributions for the structures in Refs. [19,29]
are nearly completely localized in the additional high-index
material. Therefore, the cavity resonances appear for a smaller
volume of additional material, and thus at smaller detuning
from the upper band edge, corresponding to “shallow donors”.
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FIG. 5. (Color) (a) Cross section of the distribution of high-index material taken through the center of the defect, perpendicular to a 010
direction. For clarity, arrows indicate an area with silicon and with a pore. The two intersecting defect pores result in a region with an excess
of high-index material, visible at the center of the panel. (b) and (c) are identical cross sections of the electric-field energy density distribution
ε|E|2. By means of the blue dashed lines, the regions of high energy are traced back to the material distribution. The blue section in (a) indicates
that the high energy density is found at the point defect. The coordinate system is shown in gray in (c). (d) Projection of the electric-field energy
density distribution through the whole supercell. For clarity, very low energy densities (ε|E|2 < 2) have been omitted. Multiple periodically
spaced cross sections have been taken through the entire supercell and projected on top of each other. All calculations were performed on a
5 × 5 × 5 supercell with R′ = 0.5R. The cells are indicated along the axes in units of lattice spacings a and c. The views in this figure are
taken perpendicular to both pore directions. The color bar in (c) is valid for (b) and (d).

In Fig. 6(b) the normalized mode volume Vmode/λ
3
i is

presented, determined as described in Appendix B. For an
optical cavity a small mode volume is desirable for strong
confinement of light [1,2]. The smallest mode volumes are
observed for resonances 3, 4, and 5, with volumes of about
Vmode = λ3

i at R′/a = 0.12. At R′/a = 0.11, resonance 5 even
has a mode volume as small as Vmode = 0.8λ3

i . We note that
resonance 3 appears to be of particular interest since it is
isolated from the other resonances by the largest frequency
gap. If we combine this frequency isolation with the good
confinement in real space as gauged by the small mode
volume, we conclude that a defect radius of R′/a = 0.12
is optimal, corresponding to an optimal defect pore radius
R′ = 0.5R. In the next section we investigate the properties
of the resonances at this optimal condition in more detail by
intensive computations on a large 5 × 5 × 5 supercell.

To investigate whether inverse woodpile crystals also sus-
tain “acceptor resonances”, we have performed calculations for
defect pores with radii larger than the unperturbed pores (R′ >

R). Figure 7 shows a representative band structure calculated

for R‘/a = 0.35. Intriguingly, no isolated resonances are
observed. Near the upper band gap edge, there is an isolated set
of three bands near reduced frequency (ωa/2πc) = 0.65, with
c the speed of light. A similar set of three bands is seen near the
center of the band gap near reduced frequency 0.58. Since the
individual bands within each triplet cross each other and do not
form avoided crossings, it is likely that the field profiles of each
band are orthogonal. We consider the hypothesis unlikely that
each band would form a separate localized resonance, since
each band varies considerably in frequency. We conclude that
at large defect pore radii (R′ > R) no acceptor resonances
appear, in contrast to the well-confined donor resonances for
small defect pore radii.

VI. RESONANCE CHOICE AND PRACTICAL
REALIZATION

Using a 5×5×5 supercell, extensive calculations were
performed on the optimal cavity condition identified in the
previous section. The band structure is shown in Fig. 8 for
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FIG. 6. (Color online) (a) Resonance frequencies in the photonic
band gap versus defect pore radius (R′/a). The horizontal dashed
line at reduced frequency 0.512 is the lower band edge and at reduced
frequency 0.646 the upper band edge. The red vertical dashed line at
(R′/a) = 0.24 is the perfect-crystal limit. The black dashed-dotted
line is a linear extrapolation of the first resonance frequency. (b) Mode
volume normalized to λmode

3 as a function of defect pore radius. The
resonances 3, 4, and 5 have the smallest mode volumes. Both panels
show results for a 3 × 3 × 3 supercell.

R′ = 0.5R = 0.12a. Again, five dispersionless bands appear
near the bottom of the band gap. The five bands are even flatter
compared to the results for the 3 × 3 × 3 supercell. This can
be rationalized with tight-binding arguments from solid-state
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FIG. 7. (Color online) Photonic band structure calculated for an
inverse woodpile crystal in which the two intersecting defect pores
have a radius R′

a
= 0.35 larger than the bulk radius R. No single

isolated flat bands are observed. There are isolated sets of three bands
that may correspond to coupled resonances with low confinement.
The photonic band gap of a perfect crystal is shown as a red bar.
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FIG. 8. (Color online) Calculated band structure of an inverse
woodpile photonic crystal that is defined by a 5×5×5 supercell. In
this structure two intersecting defect pores are present with a radius
R‘ = 0.5R, similar to the results shown in Fig. 2. The studied cavity
resonances are labeled 1 to 5.

physics, since bound states of atoms with an increasing density
result in bands with an increased dispersion [23,24]. Therefore,
the increased supercell calculation confirm that the cavity
resonances are increasingly confined.

FIG. 9. (Color online) (a) Minimum separation to adjacent bands
�ω of the five resonances (5×5×5 supercell calculation for R‘

a
=

0.12). We find the largest separation in frequency space for resonance
3. (b) Calculated relative mode volume of the five resonances. We
observe the smallest mode volumes for resonances 1–3. Based on
these results resonance 3, indicated by the red dashed box, is most
promising for strong confinement of light.
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A detailed comparison of the five cavity resonances is
presented in Fig. 9. The potential of each resonance is gauged
by two figures of merit:

(i) The isolation in frequency space, taken as the minimum
separation to adjacent bands �ω. A large separation to an
adjacent band corresponds to a better confinement (or less
leakage), and facilitates a selective optical addressing of a
single resonance in experiments and applications.

(ii) The mode volume normalized to the wavelength cubed,
where a smaller mode volume indicates a stronger spatial
confinement of the light.

Figure 9(a) confirms that the minimum separation to
adjacent bands of resonance 3 is largest, with 1 and 2 having
the smallest separation �ω. Furthermore, Fig. 9(b) shows
that the mode volumes of resonances 1–3 are the smallest.
The mode volumes are near Vmode

λ3
mode

= 1, indicating that light

is strongly confined. The mode volumes of resonances 4 and
5 are significantly greater. When combining these figures of
merit for mode volume and frequency isolation, we conclude
that resonance 3 has the best potential to confine light and to
be selectively addressed.

We propose to pursue the fabrication of inverse woodpiles
with embedded optical cavities by modifying our existing
CMOS-compatible manufacturing techniques. In our realized
silicon photonic crystals with typical structural properties
(lattice spacings a = 680 nm, c = 492 nm, and R

a
= 0.24) the

frequency of the target resonance corresponds to a wavelength
near 1270 nm. This wavelength is in the telecommunication O
band, which makes these photonic band gap cavities relevant
for applications. By slightly tuning the lattice parameters a and
c, and the radii R and R′, cavities can be made that operate
in the C-band near 1550 nm. Furthermore, it is noted that the
present cavity design is also relevant for inverse woodpile crys-
tals made from alternative high-index materials, such as GaAs,
GaP, or TiO2. These materials would even allow the realization
of photonic band gap cavities at visible wavelengths.

VII. CONCLUSIONS

We have performed supercell calculations on inverse
woodpiles which contain two intersecting pores that have a
different radius compared to the other pores in the crystal.
Our calculations show that isolated flat bands appear in the
photonic band gap for defect radii smaller than the bulk radius,
corresponding to donor levels in the band gap. We have shown
that the electric-field energy is concentrated about the center
of the point defect, characteristic of a resonant optical cavity.
Despite the presence of the two defect pores, there are no
preferential pathways for leaking of light of the cavity along
each separate defect pore.

We have investigated five cavity resonances and found that
the third resonance at reduced frequency (ωa/2πc) = 0.534
is most promising for confinement. We report a smallest mode
volume of around 0.8 cubic wavelengths, typical of a strong
spatial confinement of light. By varying the radius of the defect
pores, we have determined that a defect radius of R‘

a
= 0.12

gives the most optimal light confinement. Finally we have
discussed a practical method to realize the 3D photonic band
gap cavities proposed here.
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FIG. 10. (Color online) Calculated band structure of a perfect
inverse woodpile photonic crystal. Wave vector is shown between the
eight high-symmetry points of the Brillouin zone of the orthorhombic
lattice. The grid resolution of this calculation is 12 × 17 × 12. Bands
1–8 are calculated for 73 k points. The dielectric constant is εSi =
12.1, typical for silicon. A broad band gap with a relative bandwidth
of ( �ω

ω
) = 23.5% is seen between reduced frequencies 0.510 and

0.646, and indicated by the red bar. For convenience, all allowed
bands are depicted in gray.
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APPENDIX A: GRID RESOLUTION AND SUPERCELLS

The MIT photonic bands program defines the unit cell with
a certain resolution, the so-called grid resolution. In general it
is preferred to use a grid resolution that is as high as possible. In
our earlier work [41], we used a grid resolution of 68 × 96 ×
68. For the calculations in this paper, however, we have found
that this resolution is too large in view of computer memory

TABLE I. Comparison of calculated band gap edges and band
gap widths of the calculations with two different grid resolutions and
supercell definitions.

Lower and upper Relative
Supercell band gap edges band gap

Grid resolution size [ωa/2πc] width [%]

68×96×68 1×1×1 0.492 0.635 25.2
12×17×12 1×1×1 0.510 0.646 23.5
12×17×12 3×3×3 0.512 0.646 23.3
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FIG. 11. (Color online) Photonic band structure calculated for a
perfect inverse woodpile photonic crystal that is defined by a 3×3×3
supercell. Each of the 27 cells was defined with grid resolution of
12×17×12. All pore radii are equal to allow a comparison with a
conventional 1×1×1 calculation [41]. A band gap with a relative
width �ω

ω
= 23.3% is found between reduced frequencies ω = 0.512

and 0.646. For ease of interpretation, all allowed frequencies up to
the band gap edges are depicted in gray.

and time constraints. This is due to the fact that in a supercell
calculation this resolution is taken for each constituent cell.
Therefore we had to reduce the grid resolution to keep cal-
culation times tractable. Even then, the resulting computation
time for the 5×5×5 supercell calculation was multiple months.

In Fig. 10 a band structure is shown for a perfect inverse
woodpile photonic crystal calculated with a resolution limited
to 12 × 17 × 12. The band gap is indicated by the red bar.
The band edges and the width of the band gap compare well
to those found in our earlier calculations [41] with a higher
grid resolution of 68 × 96 × 68, see Table I. Consequently
we conclude that the results with a lower grid resolution are
sufficiently accurate for the present study.

In Fig. 11 the calculated band structure is shown of a perfect
inverse woodpile photonic crystal that was defined by a 3×3×3
supercell. The geometrical properties of the crystal are equal to
those used in the conventional 1×1×1 calculations. The band
gap edges and band gap width found in this calculation are in
excellent agreement with the conventional 1×1×1 calculation,
see Table I. Because a supercell is applied, band folding occurs
which causes the bands that define the band gap edges to appear
flatter.

APPENDIX B: CALCULATION OF THE MODE VOLUME

From the calculated electric-field energy density distribu-
tions we have determined mode volumes Vmode using:

Vmode = (�x�y�z)
∑

ijk Wijk

Wmax
, (B1)

with Wijk the electric-field energy density in each grid element
with sizes �x, �y, and �z along each axis, respectively, and
Wmax the maximum of the electric-field energy density ob-
tained in the entire supercell. The mode volume is normalized
to the cubed wavelength of each resonance i: Vmode

λ3
i

.

[1] K. J. Vahala, Nature (London) 424, 839 (2003).
[2] L. Novotny and B. Hecht, Principles of Nano-Optics

(Cambridge University Press, Cambridge, 2006).
[3] D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala,

Nature (London) 421, 925 (2003).
[4] J.-M. Gérard, in Single Quantum Dots, Topics in Applied

Physics Series, Vol. 90, edited by P. Michler (Springer, Berlin,
2003).

[5] Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature (London)
425, 944 (2003).

[6] O. Hess, C. Hermann, and A. Klaedtke, Phys. Stat. Sol. A. 197,
605 (2003).

[7] J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, Phys. Rev.
Lett. 95, 017402 (2005).

[8] T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst,
Nature Photon. 2, 234 (2008).

[9] E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and
C. Otto, Opt. Lett. 27, 512 (2002).

[10] J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard,
and V. Thierry-Mieg, Phys. Rev. Lett. 81, 1110 (1998).
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[20] E. Özbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho,
Phys. Rev. B. 51, 13961 (1995).

[21] P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, Phys. Rev.
B. 54, 7837 (1996).

[22] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D.
Meade, Photonic crystals - molding the flow of light (Princeton
University Press, Princeton, 2008), 2nd ed.

[23] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt,
Rinehart and Winston, Boston, 1976).

[24] E. N. Economou, The Physics of Solids: Essentials and Beyond
(Springer, New York, 2010).

[25] W. L. Vos and L. A. Woldering, in Light Localisation and
Lasing: Random and Pseudorandom Photonic Structures, edited

115140-8

http://dx.doi.org/10.1038/nature01939
http://dx.doi.org/10.1038/nature01939
http://dx.doi.org/10.1038/nature01939
http://dx.doi.org/10.1038/nature01939
http://dx.doi.org/10.1038/nature01371
http://dx.doi.org/10.1038/nature01371
http://dx.doi.org/10.1038/nature01371
http://dx.doi.org/10.1038/nature01371
http://dx.doi.org/10.1038/nature02063
http://dx.doi.org/10.1038/nature02063
http://dx.doi.org/10.1038/nature02063
http://dx.doi.org/10.1038/nature02063
http://dx.doi.org/10.1002/pssa.200303116
http://dx.doi.org/10.1002/pssa.200303116
http://dx.doi.org/10.1002/pssa.200303116
http://dx.doi.org/10.1002/pssa.200303116
http://dx.doi.org/10.1103/PhysRevLett.95.017402
http://dx.doi.org/10.1103/PhysRevLett.95.017402
http://dx.doi.org/10.1103/PhysRevLett.95.017402
http://dx.doi.org/10.1103/PhysRevLett.95.017402
http://dx.doi.org/10.1038/nphoton.2008.32
http://dx.doi.org/10.1038/nphoton.2008.32
http://dx.doi.org/10.1038/nphoton.2008.32
http://dx.doi.org/10.1038/nphoton.2008.32
http://dx.doi.org/10.1364/OL.27.000512
http://dx.doi.org/10.1364/OL.27.000512
http://dx.doi.org/10.1364/OL.27.000512
http://dx.doi.org/10.1364/OL.27.000512
http://dx.doi.org/10.1103/PhysRevLett.81.1110
http://dx.doi.org/10.1103/PhysRevLett.81.1110
http://dx.doi.org/10.1103/PhysRevLett.81.1110
http://dx.doi.org/10.1103/PhysRevLett.81.1110
http://dx.doi.org/10.1038/nature02969
http://dx.doi.org/10.1038/nature02969
http://dx.doi.org/10.1038/nature02969
http://dx.doi.org/10.1038/nature02969
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1103/PhysRevLett.95.067401
http://dx.doi.org/10.1103/PhysRevLett.95.067401
http://dx.doi.org/10.1103/PhysRevLett.95.067401
http://dx.doi.org/10.1103/PhysRevLett.95.067401
http://dx.doi.org/10.1364/OL.24.000711
http://dx.doi.org/10.1364/OL.24.000711
http://dx.doi.org/10.1364/OL.24.000711
http://dx.doi.org/10.1364/OL.24.000711
http://dx.doi.org/10.1103/PhysRevB.65.235201
http://dx.doi.org/10.1103/PhysRevB.65.235201
http://dx.doi.org/10.1103/PhysRevB.65.235201
http://dx.doi.org/10.1103/PhysRevB.65.235201
http://dx.doi.org/10.1103/PhysRevLett.58.2059
http://dx.doi.org/10.1103/PhysRevLett.58.2059
http://dx.doi.org/10.1103/PhysRevLett.58.2059
http://dx.doi.org/10.1103/PhysRevLett.58.2059
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://dx.doi.org/10.1103/PhysRevLett.107.193903
http://dx.doi.org/10.1103/PhysRevLett.107.193903
http://dx.doi.org/10.1103/PhysRevLett.107.193903
http://dx.doi.org/10.1103/PhysRevLett.107.193903
http://dx.doi.org/10.1103/PhysRevLett.67.3380
http://dx.doi.org/10.1103/PhysRevLett.67.3380
http://dx.doi.org/10.1103/PhysRevLett.67.3380
http://dx.doi.org/10.1103/PhysRevLett.67.3380
http://dx.doi.org/10.1103/PhysRevB.51.13961
http://dx.doi.org/10.1103/PhysRevB.51.13961
http://dx.doi.org/10.1103/PhysRevB.51.13961
http://dx.doi.org/10.1103/PhysRevB.51.13961
http://dx.doi.org/10.1103/PhysRevB.54.7837
http://dx.doi.org/10.1103/PhysRevB.54.7837
http://dx.doi.org/10.1103/PhysRevB.54.7837
http://dx.doi.org/10.1103/PhysRevB.54.7837


DESIGN OF A THREE-DIMENSIONAL PHOTONIC BAND . . . PHYSICAL REVIEW B 90, 115140 (2014)

by M. Ghulinyan and L. Pavesi (Cambridge University Press,
Cambridge, 2015), Chap. 8.

[26] P. V. Braun, S. A. Rinne, and F. Garcı́a-Santamarı́a, Adv. Mater.
18, 2665 (2006).

[27] Q. Yan, L. Wang, and X. S. Zhao, Adv. Funct. Mater. 17, 3695
(2007).

[28] S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M.
Ho, Phys. Rev. B. 59, R15579 (1999).

[29] M. Okano, A. Chutinan, and S. Noda, Phys. Rev. B. 66, 165211
(2002).

[30] S. P. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda,
Science 305, 227 (2004).

[31] A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura,
S. Iwamoto, and Y. Arakawa, Nature Photon. 5, 91 (2011).

[32] L. Tang and T. Yoshie, Opt. Express 15, 17254 (2007).
[33] L. Tang and T. Yoshie, IEEE J. Quant. Elec. 47, 1028 (2011).
[34] P. Ferrand, J. Seekamp, M. Egen, R. Zentel, S. G. Romanov,

and C. M. Sotomayor Torres, Microelectron. Eng. 73–74, 362
(2004).

[35] W. M. Lee, S. A. Pruzinsky, and P. V. Braun, Adv. Mater. 14,
271 (2002).

[36] S. A. Rinne, F. Garcı́a-Santamarı́a, and P. V. Braun, Nature
Photon. 2, 52 (2008).

[37] V. Ramanan, E. Nelson, A. Brzezinski, P. V. Braun, and
P. Wiltzius, Appl. Phys. Lett. 92, 173304 (2008).

[38] K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and
M. Sigalas, Solid State Commun. 89, 413 (1994).

[39] M. Maldovan and E. L. Thomas, Nature Mater. 3, 593
(2004).

[40] Z. Y. Li and Z. Q. Zhang, Phys. Rev. B. 62, 1516
(2000).

[41] L. A. Woldering, A. P. Mosk, R. W. Tjerkstra, and W. L. Vos, J.
Appl. Phys. 105, 093108 (2009).

[42] R. Hillebrand, S. Senz, W. Hergert, and U. Gösele, J. Appl. Phys.
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