181 research outputs found

    Kritik, pædagogik og videnskab

    Get PDF
    Kritik, pædagogik og videnska

    Analyzing the Feasibility of an Unmanned Cargo Ship for Different Operational Phases

    Get PDF
    The maritime industry has begun to look into autonomous ships as an alternative to conventional ships due to growing pressure to reduce the environmental impact of maritime transportation, to increase safety, to mitigate the growing challenges in recruiting seafarers, and to increase profit margins. There is a lot of research on the challenges and feasibilities of an autonomous ship. However, there is less discussion on the transition from manned to unmanned ships and the tasks that are feasible to automate before the whole ship is unmanned. This paper investigates the technical and regulatory feasibility of automating different tasks for different operational phases for a large cargo ship. This study shows that a fully unmanned cargo ship is not feasible today, but that some tasks can be automated within the next five years.publishedVersio

    The effect of spaceflight on the otolith-mediated ocular counter-roll

    Get PDF
    The otoliths of the vestibular system are seen as the primary gravitational sensors and are responsible for a compensatory eye torsion called the ocular counter-roll (OCR). The OCR ensures gaze stabilization and is sensitive to a lateral head roll with respect to gravity and the Gravito-Inertial Acceleration (GIA) vector during e.g., centrifugation. This otolith-mediated reflex will make sure you will still be able to maintain gaze stabilization and postural stability when making sharp turns during locomotion. To measure the effect of prolonged spaceflight on the otoliths, we measured the OCR induced by off-axis centrifugation in a group of 27 cosmonauts before and after their 6-month space mission to the International Space Station (ISS). We observed a significant decrease in OCR early post-flight, with first- time flyers being more strongly affected compared to frequent or experienced flyers. Our results strongly suggest that experienced space crew have acquired the ability to adapt faster after G-transitions and should therefore be sent for more challenging space missions, e.g., Moon or Mars, because they are noticeably less affected by microgravity regarding their vestibular system

    Expansion of spatial and host range of Puumala virus in Sweden: an increasing threat for humans?

    Get PDF
    Hantaviruses are globally distributed and cause severe human disease. Puumala hantavirus (PUUV) is the most common species in Northern Europe, and the only hantavirus confirmed to circulate in Sweden, restricted to the northern regions of the country. In this study, we aimed to further add to the natural ecology of PUUV in Sweden by investigating prevalence, and spatial and host species infection patterns. Specifically, we wanted to ascertain whether PUUV was present in the natural reservoir, the bank vole (Myodes glareolus) further south than Dalalven river, in south-central Sweden, and whether PUUV can be detected in other rodent species in addition to the natural reservoir. In total, 559 animals were collected at Grimso (59 degrees 43 ' N; 15 degrees 28 ' E), Sala (59 degrees 55 ' N; 16 degrees 36 ' E) and Bogesund (59 degrees 24 ' N; 18 degrees 14 ' E) in south-central Sweden between May 2013 and November 2014. PUUV ELISA-reactive antibodies were found both in 2013 (22/295) and in 2014 (18/264), and nine samples were confirmed as PUUV-specific by focus reduction neutralization test. Most of the PUUV-specific samples were from the natural host, the bank vole, but also from other rodent hosts, indicating viral spill-over. Finally, we showed that PUUV is present in more highly populated central Sweden

    A tool for evaluating heterogeneity in avidity of polyclonal antibodies

    Get PDF
    Diversity in specificity of polyclonal antibody (pAb) responses is extensively investigated in vaccine efficacy or immunological evaluations, but the heterogeneity in antibody avidity is rarely probed as convenient tools are lacking. Here we have developed a polyclonal antibodies avidity resolution tool (PAART) for use with label-free techniques, such as surface plasmon resonance and biolayer interferometry, that can monitor pAb-antigen interactions in real time to measure dissociation rate constant (kd) for defining avidity. PAART utilizes a sum of exponentials model to fit the dissociation time-courses of pAb-antigens interactions and resolve multiple kd contributing to the overall dissociation. Each kd value of pAb dissociation resolved by PAART corresponds to a group of antibodies with similar avidity. PAART is designed to identify the minimum number of exponentials required to explain the dissociation course and guards against overfitting of data by parsimony selection of best model using Akaike information criterion. Validation of PAART was performed using binary mixtures of monoclonal antibodies of same specificity but differing in kd of the interaction with their epitope. We applied PAART to examine the heterogeneity in avidities of pAb from malaria and typhoid vaccinees, and individuals living with HIV-1 that naturally control the viral load. In many cases, two to three kd were dissected indicating the heterogeneity of pAb avidities. We showcase examples of affinity maturation of vaccine induced pAb responses at component level and enhanced resolution of heterogeneity in avidity when antigen-binding fragments (Fab) are used instead of polyclonal IgG antibodies. The utility of PAART can be manifold in examining circulating pAb characteristics and could inform vaccine strategies aimed to guide the host humoral immune response

    Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data

    Get PDF
    We report a quasi-differential upper limit on the extremely-high-energy (EHE) neutrino flux above 5×1065\times 10^{6} GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 10610^{6} GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5×1065 \times 10^{6} and 5×10105 \times 10^{10} GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\ {\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}at at 10^9\ {\rm GeV}$. A significant part of the parameter-space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review

    COVID-19 severity and thrombo-inflammatory response linked to ethnicity

    Get PDF
    Although there is strong evidence that SARS-CoV-2 infection is associated with adverse outcomes in certain ethnic groups, the association of disease severity and risk factors such as comorbidities and biomarkers with racial disparities remains undefined. This retrospective study between March 2020 and February 2021 explores COVID-19 risk factors as predictors for patients’ disease progression through country comparison. Disease severity predictors in Germany and Japan were cardiovascular-associated comorbidities, dementia, and age. We adjusted age, sex, body mass index, and history of cardiovascular disease comorbidity in the country cohorts using a propensity score matching (PSM) technique to reduce the influence of differences in sample size and the surprisingly young, lean Japanese cohort. Analysis of the 170 PSM pairs confirmed that 65.29% of German and 85.29% of Japanese patients were in the uncomplicated phase. More German than Japanese patients were admitted in the complicated and critical phase. Ethnic differences were identified in patients without cardiovascular comorbidities. Japanese patients in the uncomplicated phase presented a suppressed inflammatory response and coagulopathy with hypocoagulation. In contrast, German patients exhibited a hyperactive inflammatory response and coagulopathy with hypercoagulation. These differences were less pronounced in patients in the complicated phase or with cardiovascular diseases. Coagulation/fibrinolysis-associated biomarkers rather than inflammatory-related biomarkers predicted disease severity in patients with cardiovascular comorbidities: platelet counts were associated with severe illness in German patients. In contrast, high D-dimer and fibrinogen levels predicted disease severity in Japanese patients. Our comparative study indicates that ethnicity influences COVID-19-associated biomarker expression linked to the inflammatory and coagulation (thrombo-inflammatory) response. Future studies will be necessary to determine whether these differences contributed to the less severe disease progression observed in Japanese COVID-19 patients compared with those in Germany

    Simulating the optical performances of the ATHENA x-ray telescope optics

    Get PDF
    The ATHENA (Advanced Telescope for High Energy Astrophysics) X-ray observatory is an ESA-selected L2 class mission. In the proposed configuration, the optical assembly has a diameter of 2.2 m with an effective area of 1.4 m2 at 1 keV, 0.25 m2 at 6 keV, and requires an angular resolution of 5 arcsec. To meet the requirements of effective area and angular resolution, the technology of Silicon Pore Optics (SPO) was selected for the optics implementation. The ATHENA's optic assembly requires hundreds of SPOs mirror modules (MMs), obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. Different factors can contribute to limit the imaging performances of SPOs, such as i) diffraction through the pore apertures, ii) plate deformations due to fabrication errors and surface roughness, iii) alignment errors among plates in an MM, and iv) co-focality errors within the MMs assembly. In order to determine the fabrication and assembling tolerances, the impact of these contributions needs to be assessed prior to manufacturing. A set of simulation tools responding to this need was developed in the framework of the ESA-financed projects SIMPOSIuM and ASPHEA. In this paper, we present the performance simulation obtained for the recentlyproposed ATHENA configuration in terms of effective area, and we provide a simulation of the diffractive effects in a pair of SPO MMs. Finally, we present an updated sizing of magnetic diverter (a Halbach array) and the magnetic fields levels that can be reached in order to deviate the most energetic protons out of the detector field
    corecore