68 research outputs found

    Regulator of G-Protein Signaling 14 (RGS14) Is a Selective H-Ras Effector

    Get PDF
    Background: Regulator of G-protein signaling (RGS) proteins have been well-described as accelerators of Ga-mediated GTP hydrolysis (‘‘GTPase-accelerating proteins’’ or GAPs). However, RGS proteins with complex domain architectures are now known to regulate much more than Ga GTPase activity. RGS14 contains tandem Ras-binding domains that have been reported to bind to Rap- but not Ras GTPases in vitro, leading to the suggestion that RGS14 is a Rap-specific effector. However, more recent data from mammals and Drosophila imply that, in vivo, RGS14 may instead be an effector of Ras.Methodology/Principal Findings: Full-length and truncated forms of purified RGS14 protein were found to bind indiscriminately in vitro to both Rap- and Ras-family GTPases, consistent with prior literature reports. In stark contrast, however, we found that in a cellular context RGS14 selectively binds to activated H-Ras and not to Rap isoforms. Co- transfection / co-immunoprecipitation experiments demonstrated the ability of full-length RGS14 to assemble a multiprotein complex with components of the ERK MAPK pathway in a manner dependent on activated H-Ras. Small interfering RNA-mediated knockdown of RGS14 inhibited both nerve growth factor- and basic fibrobast growth factor- mediated neuronal differentiation of PC12 cells, a process which is known to be dependent on Ras-ERK signaling.Conclusions/Significance: In cells, RGS14 facilitates the formation of a selective Ras?GTP-Raf-MEK-ERK multiprotein complex to promote sustained ERK activation and regulate H-Ras-dependent neuritogenesis. This cellular function for RGS14 is similar but distinct from that recently described for its closely-related paralogue, RGS12, which shares the tandem Ras- binding domain architecture with RGS14

    G Protein Activation without a GEF in the Plant Kingdom

    Get PDF
    Animal heterotrimeric G proteins are activated by guanine nucleotide exchange factors (GEF), typically seven transmembrane receptors that trigger GDP release and subsequent GTP binding. In contrast, the Arabidopsis thaliana G protein (AtGPA1) rapidly activates itself without a GEF and is instead regulated by a seven transmembrane Regulator of G protein Signaling (7TM-RGS) protein that promotes GTP hydrolysis to reset the inactive (GDP-bound) state. It is not known if this unusual activation is a major and constraining part of the evolutionary history of G signaling in eukaryotes. In particular, it is not known if this is an ancestral form or if this mechanism is maintained, and therefore constrained, within the plant kingdom. To determine if this mode of signal regulation is conserved throughout the plant kingdom, we analyzed available plant genomes for G protein signaling components, and we purified individually the plant components encoded in an informative set of plant genomes in order to determine their activation properties in vitro. While the subunits of the heterotrimeric G protein complex are encoded in vascular plant genomes, the 7TM-RGS genes were lost in all investigated grasses. Despite the absence of a Gα-inactivating protein in grasses, all vascular plant Gα proteins examined rapidly released GDP without a receptor and slowly hydrolyzed GTP, indicating that these Gα are self-activating. We showed further that a single amino acid substitution found naturally in grass Gα proteins reduced the Gα-RGS interaction, and this amino acid substitution occurred before the loss of the RGS gene in the grass lineage. Like grasses, non-vascular plants also appear to lack RGS proteins. However, unlike grasses, one representative non-vascular plant Gα showed rapid GTP hydrolysis, likely compensating for the loss of the RGS gene. Our findings, the loss of a regulatory gene and the retention of the “self-activating” trait, indicate the existence of divergent Gα regulatory mechanisms in the plant kingdom. In the grasses, purifying selection on the regulatory gene was lost after the physical decoupling of the RGS protein and its cognate Gα partner. More broadly these findings show extreme divergence in Gα activation and regulation that played a critical role in the evolution of G protein signaling pathways

    Insights into the pathogenesis of vein graft disease: lessons from intravascular ultrasound

    Get PDF
    The success of coronary artery bypass grafting (CABG) is limited by poor long-term graft patency. Saphenous vein is used in the vast majority of CABG operations, although 15% are occluded at one year with as many as 50% occluded at 10 years due to progressive graft atherosclerosis. Intravascular ultrasound (IVUS) has greatly increased our understanding of this process. IVUS studies have shown that early wall thickening and adaptive remodeling of vein grafts occurs within the first few weeks post implantation, with these changes stabilising in angiographically normal vein grafts after six months. Early changes predispose to later atherosclerosis with occlusive plaque detectable in vein grafts within the first year. Both expansive and constrictive remodelling is present in diseased vein grafts, where the latter contributes significantly to occlusive disease. These findings correlate closely with experimental and clinicopathological studies and help define the windows for prevention, intervention or plaque stabilisation strategies. IVUS is also the natural tool for evaluating the effectiveness of pharmacological and other treatments that may prevent or slow the progression of vein graft disease in clinical trials

    Using human artificial chromosomes to study centromere assembly and function

    Get PDF

    Sequence Features and Transcriptional Stalling within Centromere DNA Promote Establishment of CENP-A Chromatin

    Get PDF
    Centromere sequences are not conserved between species, and there is compelling evidence for epigenetic regulation of centromere identity, with location being dictated by the presence of chromatin containing the histone H3 variant CENP-A. Paradoxically, in most organisms CENP-A chromatin generally occurs on particular sequences. To investigate the contribution of primary DNA sequence to establishment of CENP-A chromatin in vivo, we utilised the fission yeast Schizosaccharomyces pombe. CENP-ACnp1 chromatin is normally assembled on ∼10 kb of central domain DNA within these regional centromeres. We demonstrate that overproduction of S. pombe CENP-ACnp1 bypasses the usual requirement for adjacent heterochromatin in establishing CENP-ACnp1 chromatin, and show that central domain DNA is a preferred substrate for de novo establishment of CENP-ACnp1 chromatin. When multimerised, a 2 kb sub-region can establish CENP-ACnp1 chromatin and form functional centromeres. Randomization of the 2 kb sequence to generate a sequence that maintains AT content and predicted nucleosome positioning is unable to establish CENP-ACnp1 chromatin. These analyses indicate that central domain DNA from fission yeast centromeres contains specific information that promotes CENP-ACnp1 incorporation into chromatin. Numerous transcriptional start sites were detected on the forward and reverse strands within the functional 2 kb sub-region and active promoters were identified. RNAPII is enriched on central domain DNA in wild-type cells, but only low levels of transcripts are detected, consistent with RNAPII stalling during transcription of centromeric DNA. Cells lacking factors involved in restarting transcription-TFIIS and Ubp3-assemble CENP-ACnp1 on central domain DNA when CENP-ACnp1 is at wild-type levels, suggesting that persistent stalling of RNAPII on centromere DNA triggers chromatin remodelling events that deposit CENP-ACnp1. Thus, sequence-encoded features of centromeric DNA create an environment of pervasive low quality RNAPII transcription that is an important determinant of CENP-ACnp1 assembly. These observations emphasise roles for both genetic and epigenetic processes in centromere establishment

    CenH3 evolution in diploids and polyploids of three angiosperm genera

    Get PDF
    BACKGROUND: Centromeric DNA sequences alone are neither necessary nor sufficient for centromere specification. The centromere specific histone, CenH3, evolves rapidly in many species, perhaps as a coevolutionary response to rapidly evolving centromeric DNA. To gain insight into CenH3 evolution, we characterized patterns of nucleotide and protein diversity among diploids and allopolyploids within three diverse angiosperm genera, Brassica, Oryza, and Gossypium (cotton), with a focus on evidence for diversifying selection in the various domains of the CenH3 gene. In addition, we compare expression profiles and alternative splicing patterns for CenH3 in representatives of each genus. RESULTS: All three genera retain both duplicated CenH3 copies, while Brassica and Gossypium exhibit pronounced homoeologous expression level bias. Comparisons among genera reveal shared and unique aspects of CenH3 evolution, variable levels of diversifying selection in different CenH3 domains, and that alternative splicing contributes significantly to CenH3 diversity. CONCLUSIONS: Since the N terminus is subject to diversifying selection but the DNA binding domains do not appear to be, rapidly evolving centromere sequences are unlikely to be the primary driver of CenH3 sequence diversification. At present, the functional explanation for the diversity generated by both conventional protein evolution in the N terminal domain, as well as alternative splicing, remains unexplained. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-014-0383-3) contains supplementary material, which is available to authorized users

    In vitro influence of dietary protein and fructooligosaccharides on metabolism of canine fecal microbiota

    Get PDF
    BACKGROUND: The present in vitro study investigated whether the utilization of fructooligosaccharides (FOS) may influence canine fecal microbial population in presence of diets differing in their protein content and digestibility. Fresh fecal samples were collected from five adult dogs, pooled, and incubated for 24 h with the undigested residue of three diets: 1, Low protein high digestibility diet (LP HD, crude protein (CP) 229 g/kg); 2, High protein high digestibility diet (HP HD, CP 304 g/kg); 3, High protein low digestibility diet (HP LD, CP 303 g/kg) that had been previously subjected to enzymatic digestion. In the in vitro fermentation study, there were six treatments: 1) LP HD; 2) HP HD 3) HP LD; 4) LP HD + FOS; 5) HP HD + FOS; 6) HP LD + FOS. Fructooligosaccharides were added at the final concentration of 1.5 g/L. Samples of fermentation fluid were collected at 6 and 24 h of incubation. RESULTS: Values of pH were reduced by FOS at 6 and 24 h (P < 0.001); conversely, low protein digestibility and high dietary protein level resulted in higher pH at both sampling times (P < 0.001). At 24 h, FOS lowered ammonia (−10 %; P < 0.001) and resulted (P < 0.05) in higher concentrations of total volatile fatty acids (VFA) (+43 %), acetic acid (+14 %), propionic acid (+75 %) and n-butyric acid (+372 %). Conversely, at 24 h, low protein digestibility resulted (P < 0.01) in lower concentrations of acetic acid (−26 %), propionic acid (−37 %) and total VFA (−21 %). Putrescine concentrations were increased at 6 and 24 h of fermentation by low protein digestibility (+21 and 22 %, respectively; P < 0.05) and FOS (+18 and 24 %, respectively; P < 0.01). After 24 h of fermentation, high dietary protein level resulted in lower counts of lactobacilli and enterococci (−0.5 and −0.7 log cells/mL, respectively; P < 0.05) whereas low protein digestibility tended to increase counts of C. perfringens (+0.2 log cells/mL; P = 0.07). CONCLUSIONS: Results from the present study showed that diets rich in protein may exert negative influences on the canine intestinal ecosystem, slightly increasing the presence of ammonia and reducing counts of lactobacilli and enterococci. Moreover, the presence of poorly digestible protein resulted in lower concentrations of VFA. Conversely, administration of FOS may improve metabolism of canine intestinal microbiota, reducing ammonia concentrations and enhancing VFA production

    Review of upper limb ability assessments in acute stroke care, from a practice perspective

    No full text
    Aims: The purpose of this study was to compare three upper limb ability assessments – the Action Research Arm Test (ARAT), Arm Motor Ability Test (AMAT), and Chedoke Arm and Hand Activity Inventory (CAHAI) – in acute stroke occupational therapy practice during a 6-month period, to identify whether any or all were appropriate for use in acute stroke care
    corecore