1,763 research outputs found
Grief and its Implications in Childhood and Adolescence
Death has always been a taboo subject. However, it is impossible for anyone to avoid death in terms of their loved ones or their own mortality. Therefore it is impossible to avoid the at times overbearing emotion of grief. Grief can be exposed in the light of someone passing, loss of a relationship, diminishing health, loss of a job, and even loss in athletic ability. There is no singular reason for grief to be present, nor are there simple and straightforward ways to cope and move forward. Grief on the individual and universal scale has no time frame. It is helpful to try to understand the emotions that are linked with grief, specifically the ones demonstrated in the Kübler-Ross Model and the lack of complete control in the mourning process. Children compared to adults respond differently to grief and their comprehension of the end of life is not always the same. Therefore, grief in childhood and adolescence has a multitude of differentiating factors in comparison to grief in adulthood
Policies and Procedures for the Termination of War Contracts
The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices
Skokie, the ACLU and the Endurance of Democratic Theory
ZnO nanorods (NRs) with high surface area to volume ratio and biocompatibility is used as an efficient photosensitizer carrier system and at the same time providing intrinsic white light needed to achieve cancer cell necrosis. In this letter, ZnO nanorods used for the treatment of breast cancer cell (T47D) are presented. To adjust the sample for intracellular experiments, we have grown the ZnO nanorods on the tip of borosilicate glass capillaries (0.5 mu m diameter) by aqueous chemical growth technique. The grown ZnO nanorods were conjugated using protoporphyrin dimethyl ester (PPDME), which absorbs the light emitted by the ZnO nanorods. Mechanism of cytotoxicity appears to involve the generation of singlet oxygen inside the cell. The novel findings of cell-localized toxicity indicate a potential application of PPDME-conjugated ZnO NRs in the necrosis of breast cancer cell within few minutes
With No Deliberate Speed: The Segregation of Roma Children in Europe
In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices
Coming into the Anthropocene
This essay reviews Professor Jonathan Cannon’s Environment in the Balance. Cannon’s book admirably analyzes the Supreme Court’s uptake of, or refusal of, the key commitments of the environmental-law revolution of the early 1970s. In some areas the Court has adapted old doctrines, such as Standing and Commerce, to accommodate ecological insights; in other areas, such as Property, it has used older doctrines to restrain the transformative effects of environmental law. After surveying Cannon’s argument, this review diagnoses the historical moment that has made the ideological division that Cannon surveys especially salient: a time of stalled legislation, political deadlock, and highly contested regulatory and judicial interpretation. This analysis, however, does not limit the interest of Cannon’s analysis to this political moment. Rather, Cannon’s integration of legal and cultural analysis has great promise for the Anthropocene, the dawning era when human decisions and values will be among the most important forces shaping the planet. In the future, it will be necessary to think of environmental law as both reflecting and producing ideas of the value and meaning of the natural world. Cannon’s analysis is an excellent starting point for an Anthropocene approach
Aviation Law Comes Home to the Main Street Lawyer
Well controlled in length and highly aligned ZnO nanorods were grown on the gold-coated glass substrate by hydrothermal growth method. ZnO nanorods were functionalised with selective thallium (I) ion ionophore dibenzyldiaza-18-crown-6 (DBzDA18C6). The thallium ion sensor showed wide linear potentiometric response to thallium (I) ion concentrations ( M to M) with high sensitivity of 36.87 ± 1.49 mV/decade. Moreover, thallium (I) ion demonstrated fast response time of less than 5 s, high selectivity, reproducibility, storage stability, and negligible response to common interferents. The proposed thallium (I) ion-sensor electrode was also used as an indicator electrode in the potentiometric titration, and it has shown good stoichiometric response for the determination of thallium (I) ion
Weak antilocalization in quantum wells in tilted magnetic fields
Weak antilocalization is studied in an InGaAs quantum well. Anomalous
magnetoresistance is measured and described theoretically in fields
perpendicular, tilted and parallel to the quantum well plane. Spin and phase
relaxation times are found as functions of temperature and parallel field. It
is demonstrated that spin dephasing is due to the Dresselhaus spin-orbit
interaction. The values of electron spin splittings and spin relaxation times
are found in the wide range of 2D density. Application of in-plane field is
shown to destroy weak antilocalization due to competition of Zeeman and
microroughness effects. Their relative contributions are separated, and the
values of the in-plane electron g-factor and characteristic size of interface
imperfections are found.Comment: 8 pages, 8 figure
- …
