1,006 research outputs found

    Grief and its Implications in Childhood and Adolescence

    Get PDF
    Death has always been a taboo subject. However, it is impossible for anyone to avoid death in terms of their loved ones or their own mortality. Therefore it is impossible to avoid the at times overbearing emotion of grief. Grief can be exposed in the light of someone passing, loss of a relationship, diminishing health, loss of a job, and even loss in athletic ability. There is no singular reason for grief to be present, nor are there simple and straightforward ways to cope and move forward. Grief on the individual and universal scale has no time frame. It is helpful to try to understand the emotions that are linked with grief, specifically the ones demonstrated in the Kübler-Ross Model and the lack of complete control in the mourning process. Children compared to adults respond differently to grief and their comprehension of the end of life is not always the same. Therefore, grief in childhood and adolescence has a multitude of differentiating factors in comparison to grief in adulthood

    Policies and Procedures for the Termination of War Contracts

    Get PDF
    The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices

    Aviation Law Comes Home to the Main Street Lawyer

    Get PDF
    Well controlled in length and highly aligned ZnO nanorods were grown on the gold-coated glass substrate by hydrothermal growth method. ZnO nanorods were functionalised with selective thallium (I) ion ionophore dibenzyldiaza-18-crown-6 (DBzDA18C6). The thallium ion sensor showed wide linear potentiometric response to thallium (I) ion concentrations ( M to  M) with high sensitivity of 36.87 ± 1.49 mV/decade. Moreover, thallium (I) ion demonstrated fast response time of less than 5 s, high selectivity, reproducibility, storage stability, and negligible response to common interferents. The proposed thallium (I) ion-sensor electrode was also used as an indicator electrode in the potentiometric titration, and it has shown good stoichiometric response for the determination of thallium (I) ion

    Responding to Agency Avoidance of OIRA

    Get PDF
    Concerns have recently been raised that US federal agencies may sometimes avoid regulatory review by the White House Office of Information and Regulatory Affairs (OIRA). In this article, we assess the seriousness of such potential avoidance, and we recommend a framework for evaluating potential responses. After summarizing the system of presidential regulatory oversight through OIRA review, we analyze the incentives for agencies to cooperate with or avoid OIRA. We identify a wider array of agency avoidance tactics than has past scholarship, and a wider array of corresponding response options available to OIRA, the President, Congress, and the courts. We argue that, because the relationship between agencies and OIRA involves ongoing repeat player interactions, some of these avoidance tactics are less likely to occur (or to succeed) than has previously been alleged, and others are more likely; the difference depends significantly on how easy it is for OIRA to detect avoidance, and for OIRA, the courts, and others to respond. Further, we note that in this repeat player relationship, responses to agency avoidance tactics may induce further strategic moves and countermoves. Thus we further argue that the optimal response may not always be to try to eliminate the avoidance behavior; some avoidance may be worth tolerating where the benefits of trying to reduce agency avoidance would not justify the costs of response options and countermoves. We therefore conclude that responses to agency avoidance should be evaluated in a way similar to what OIRA asks of agencies evaluating proposed regulations: by weighing the pros and cons of alternative response options (including no action)

    Skokie, the ACLU and the Endurance of Democratic Theory

    Get PDF
    ZnO nanorods (NRs) with high surface area to volume ratio and biocompatibility is used as an efficient photosensitizer carrier system and at the same time providing intrinsic white light needed to achieve cancer cell necrosis. In this letter, ZnO nanorods used for the treatment of breast cancer cell (T47D) are presented. To adjust the sample for intracellular experiments, we have grown the ZnO nanorods on the tip of borosilicate glass capillaries (0.5 mu m diameter) by aqueous chemical growth technique. The grown ZnO nanorods were conjugated using protoporphyrin dimethyl ester (PPDME), which absorbs the light emitted by the ZnO nanorods. Mechanism of cytotoxicity appears to involve the generation of singlet oxygen inside the cell. The novel findings of cell-localized toxicity indicate a potential application of PPDME-conjugated ZnO NRs in the necrosis of breast cancer cell within few minutes

    With No Deliberate Speed: The Segregation of Roma Children in Europe

    Get PDF
    In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices
    • …
    corecore