1,433 research outputs found

    Constraints on a New Post-General Relativity Cosmological Parameter

    Get PDF
    A new cosmological variable is introduced which characterizes the degree of departure from Einstein's General Relativity (GR) with a cosmological constant. The new parameter, \varpi, is the cosmological analog of \gamma, the parametrized post-Newtonian variable which measures the amount of spacetime curvature per unit mass. In the cosmological context, \varpi measures the difference between the Newtonian and longitudinal potentials in response to the same matter sources, as occurs in certain scalar-tensor theories of gravity. Equivalently, \varpi measures the scalar shear fluctuation in a dark energy component. In the context of a "vanilla" LCDM background cosmology, a non-zero \varpi signals a departure from GR or a fluctuating cosmological constant. Using a phenomenological model for the time evolution \varpi=\varpi_0 \rho_{DE}/\rho_{M} which depends on the ratio of energy density in the cosmological constant to the matter density at each epoch, it is shown that the observed cosmic microwave background (CMB) temperature anisotropies limit the overall normalization constant to be -0.4 < \varpi_0 < 0.1 at the 95% confidence level. Existing measurements of the cross-correlations of the CMB with large-scale structure further limit \varpi_0 > -0.2 at the 95% CL. In the future, integrated Sachs-Wolfe and weak lensing measurements can more tightly constrain \varpi_0, providing a valuable clue to the nature of dark energy and the validity of GR.Comment: 9 pages, 7 figures; added reference

    Testing General Relativity with Current Cosmological Data

    Full text link
    Deviations from general relativity, such as could be responsible for the cosmic acceleration, would influence the growth of large scale structure and the deflection of light by that structure. We clarify the relations between several different model independent approaches to deviations from general relativity appearing in the literature, devising a translation table. We examine current constraints on such deviations, using weak gravitational lensing data of the CFHTLS and COSMOS surveys, cosmic microwave background radiation data of WMAP5, and supernova distance data of Union2. Markov Chain Monte Carlo likelihood analysis of the parameters over various redshift ranges yields consistency with general relativity at the 95% confidence level.Comment: 11 pages; 7 figures; typographical errors corrected; this is the published versio

    Coupled Inflation and Brane Gases

    Get PDF
    We study an effective four-dimensional theory with an action with two scalar fields minimally coupled to gravity, and with a matter action which couples to the two scalar fields via an overall field-dependent coefficient in the action. Such a theory could arise from a dimensional reduction of supergravity coupled to a gas of branes winding the compactified dimensions. We show the existence of solutions corresponding to power-law inflation. The graceful exit from inflation can be obtained by postulating the decay of the branes, as would occur if the branes are unstable in the vacuum and stabilized at high densities by plasma effects. This construction provides an avenue for connecting string gas cosmology and the late-time universe.Comment: 11 page

    The Theory of a Quantum Noncanonical Field in Curved Spacetimes

    Full text link
    Much attention has been recently devoted to the possibility that quantum gravity effects could lead to departures from Special Relativity in the form of a deformed Poincar\`e algebra. These proposals go generically under the name of Doubly or Deformed Special Relativity (DSR). In this article we further explore a recently proposed class of quantum field theories, involving noncanonically commuting complex scalar fields, which have been shown to entail a DSR-like symmetry. An open issue for such theories is whether the DSR-like symmetry has to be taken as a physically relevant symmetry, or if in fact the "true" symmetries of the theory are just rotations and translations while boost invariance has to be considered broken. We analyze here this issue by extending the known results to curved spacetime under both of the previous assumptions. We show that if the symmetry of the free theory is taken to be a DSR-like realization of the Poincar\'e symmetry, then it is not possible to render such a symmetry a gauge symmetry of the curved physical spacetime. However, it is possible to introduce an auxiliary spacetime which allows to describe the theory as a standard quantum field theory in curved spacetime. Alternatively, taking the point of view that the noncanonical commutation of the fields actually implies a breakdown of boost invariance, the physical spacetime manifold has to be foliated in surfaces of simultaneity and the field theory can be coupled to gravity by making use of the ADM prescription.Comment: 9 pages, no figure

    A New Facility to Enhance Australian GPS-geodetic Research

    Get PDF
    The Australian Research Council recently awarded a grant to a consortium of five Australian universities to purchase ten geodetic-quality GPS receivers and peripherals. This cooperative approach will enhance new and existing GPS-geodetic research opportunities for Australian academic geodesists. These research projects include the monitoring of deformation of man-made structures and natural features, global and regional plate tectonics, measurement of sea-level change, mapping of Antarctic ice sheets and their flow, sounding of the Earth's atmosphere, and experiments in kinematic and rapid-static GPS-geodesy

    Cosmological tests of General Relativity: a principal component analysis

    Get PDF
    The next generation of weak lensing surveys will trace the evolution of matter perturbations and gravitational potentials from the matter dominated epoch until today. Along with constraining the dynamics of dark energy, they will probe the relations between matter overdensities, local curvature, and the Newtonian potential. We work with two functions of time and scale to account for any modifications of these relations in the linear regime from those in the LCDM model. We perform a Principal Component Analysis (PCA) to find the eigenmodes and eigenvalues of these functions for surveys like DES and LSST. This paper builds on and significantly extends the PCA analysis of Zhao et al. (2009) in several ways. In particular, we consider the impact of some of the systematic effects expected in weak lensing surveys. We also present the PCA in terms of other choices of the two functions needed to parameterize modified growth on linear scales, and discuss their merits. We analyze the degeneracy between the modified growth functions and other cosmological parameters, paying special attention to the effective equation of state w(z). Finally, we demonstrate the utility of the PCA as an efficient data compression stage which enables one to easily derive constraints on parameters of specific models without recalculating Fisher matrices from scratch.Comment: 18 pages, 24 figure

    Mate Replacement and Alloparental Care in Ferruginous Hawk

    Get PDF
    Alloparental care (i.e., care for unrelated offspring) has been documented in various avian species (Maxson 1978, Smith et al. 1996, Tella et al. 1997, Lislevand et al. 2001, Literak and Mraz 2011). A male replacement mate that encounters existing broods has options, which include alloparental care or infanticide. Infanticide may be beneficial in some species (Rohwer 1986, Kermott et al. 1990), but in long-lived avian species, like the ferruginous hawk (Buteo regalis) that do not renest within a season, infanticide might be detrimental. Adoption and rearing success likely provide direct evidence of competence of replacement mates as potential parents for future seasons, a benefit that might outweigh the investment of time and effort associated with adoption and rearing (after Rohwer 1986). Anticipated mating opportunity at the cost of adoption (Gori et al. 1996, Rohwer et al. 1999) may explain step-parental benevolence and therefore, in such a scenario would enhance individual fitness through subsequent recruitment of related young

    Depressive Symptoms in The National Longitudinal Study of Adolescent to Adult Health (Add Health)

    Get PDF
    Depressive symptoms are common, affecting an estimated 18.5% of adults in the United States (US) in a recent two-week period (Villarroel and Terlizzi 2020). The prevalence of depressive symptoms rose sharply among US adolescents and young adults between 2012 and 2018 (Keyes et al. 2019) and tripled among adults ages 18 and over from 2019 to 2020 during the early stages of the COVID-19 pandemic (Ettman et al. 2020). The burden of depressive symptoms is also unequally distributed across the US population, such that some sociodemographic groups tend to experience higher depressive symptom levels than others. This data brief highlights the utility of using the National Longitudinal Study of Adolescent to Adult Health (Add Health) to study depressive symptoms among US adults
    • …
    corecore