6,588 research outputs found

    Atmospheric considerations for CTA site search using global models

    Full text link
    The Cherenkov Telescope Array (CTA) will be the next high-energy gamma-ray observatory. Selection of the sites, one in each hemisphere, is not obvious since several factors have to be taken into account. Among them, and probably the most crucial, are the atmospheric conditions. Indeed, CTA will use the atmosphere as a giant calorimeter, i.e. as part of the detector. The Southern Hemisphere presents mainly four candidate sites: one in Namibia, one in Chile and two in Argentina. Using atmospheric tools already validated in other air shower experiments, the purpose of this work is to complete studies aiming to choose the site with the best quality for the atmosphere. Three strong requirements are checked: the cloud cover and the frequency of clear skies, the wind speed and the backward trajectories of air masses travelling above the sites and directly linked to the aerosol concentrations. It was found, that the Namibian site is favoured, and one site in Argentina is clearly not suited. Atmospheric measurements at these sites will be performed in the coming months and will help with the selection of a CTA site.Comment: 4 pages, 4 figures, ECRS'12 - 23rd European Cosmic Ray Symposium (July, 3-7, 2012) at Mosco

    Precision Tests of Electroweak Physics

    Get PDF
    We review the current status of precision electroweak measurements and the constraints they impose on new physics. We perform a model independent analysis using the STU-formalism of Ref. 1, and then discuss how the Z-pole data from LEP and SLD can be used to constrain models that are not covered within that framework.Comment: 1 cover page + 8 pages, 8 postscript figures, LaTeX2e, ws-p9-75x6-50.cls, Talk presented at Hadron 13, Mumbai, India, January 14-20, 199

    Precessing supermassive black hole binaries and dark energy measurements with LISA

    Full text link
    Spin induced precessional modulations of gravitational wave signals from supermassive black hole binaries can improve the estimation of luminosity distance to the source by space based gravitational wave missions like the Laser Interferometer Space Antenna (LISA). We study how this impacts the ablity of LISA to do cosmology, specifically, to measure the dark energy equation of state (EOS) parameter ww. Using the Λ\LambdaCDM model of cosmology, we show that observations of precessing binaries by LISA, combined with a redshift measurement, can improve the determination of ww up to an order of magnitude with respect to the non precessing case depending on the masses, mass ratio and the redshift.Comment: 4 pages, 4 figures, version accepted to PR

    Geodetic precession and frame dragging observed far from massive objects and close to a gyroscope

    Full text link
    Total precession (geodetic precession and frame dragging) depends on the velocity of each source of gravitation, which means that it depends on the choice of the coordinate system. We consider the latter as an anomaly specifically in the Gravity Probe B experiment, we investigated it and solved this anomaly. Thus, we proved that if our present expression for the geodetic precession is correct, then the frame dragging should be 25% less than its predicted value.Comment: 11 page

    Ground Beetles of Islands in the Western Basin of Lake Erie and the Adjacent Mainland (Coleoptera: Carabidae, Including Cicindelini)

    Get PDF
    We report 241 species representing 63 genera of ground beetles from the islands of the western basin of Lake Erie and selected mainland sites from a 1991-93 survey, plus specimens examined in public and private collections, and previously published sources. Most species are generally distributed; however, a restricted population of Sphaeroderus schaumii schaumii we rediscovered is no doubt imperiled. Comparison of wing morphotype frequencies of the Lake Erie island species with mainland populations from studies in Ohio and Michigan support a hypothesis that vagility is of increased import in the islands. Regression and correlation analysis show a positive relationship between species number and island area, no correlation between species number and distance from the mainland and an improved fit for a multiple regression which includes collecting effort

    Testing Scalar-Tensor Gravity Using Space Gravitational-Wave Interferometers

    Get PDF
    We calculate the bounds which could be placed on scalar-tensor theories of gravity of the Jordan, Fierz, Brans and Dicke type by measurements of gravitational waveforms from neutron stars (NS) spiralling into massive black holes (MBH) using LISA, the proposed space laser interferometric observatory. Such observations may yield significantly more stringent bounds on the Brans-Dicke coupling parameter \omega than are achievable from solar system or binary pulsar measurements. For NS-MBH inspirals, dipole gravitational radiation modifies the inspiral and generates an additional contribution to the phase evolution of the emitted gravitational waveform. Bounds on \omega can therefore be found by using the technique of matched filtering. We compute the Fisher information matrix for a waveform accurate to second post-Newtonian order, including the effect of dipole radiation, filtered using a currently modeled noise curve for LISA, and determine the bounds on \omega for several different NS-MBH canonical systems. For example, observations of a 1.4 solar mass NS inspiralling to a 1000 solar mass MBH with a signal-to-noise ratio of 10 could yield a bound of \omega > 240,000, substantially greater than the current experimental bound of \omega > 3000.Comment: 18 pages, 4 figures, 1 table; to be submitted to Phys. Rev.

    Stability and Quasinormal Modes of Black holes in Tensor-Vector-Scalar theory: Scalar Field Perturbations

    Full text link
    The imminent detection of gravitational waves will trigger precision tests of gravity through observations of quasinormal ringing of black holes. While General Relativity predicts just two polarizations of gravitational waves, the so-called plus and cross polarizations, numerous alternative theories of gravity predict up to six different polarizations which will potentially be observed in current and future generations of gravitational wave detectors. Bekenstein's Tensor-Vector-Scalar (TeVeS) theory and its generalization fall into one such class of theory that predict the full gamut of six polarizations of gravitational waves. In this paper we begin the study of quasinormal modes (QNMs) in TeVeS by studying perturbations of the scalar field in a spherically symmetric background. We show that, at least in the case where superluminal propagation of perturbations is not present, black holes are generically stable to this kind of perturbation. We also make a unique prediction that, as the limit of the various coupling parameters of the theory tend to zero, the QNM spectrum tends to 1/21/\sqrt{2} times the QNM spectrum induced by scalar perturbations of a Schwarzschild black hole in General Relativity due to the intrinsic presence of the background vector field. We further show that the QNM spectrum does not vary significantly from this value for small values of the theory's coupling parameters, however can vary by as much as a few percent for larger, but still physically relevant parameters.Comment: Published in Physical Review

    Probing Strong-Field Scalar-Tensor Gravity with Gravitational Wave Asteroseismology

    Full text link
    We present an alternative way of tracing the existence of a scalar field based on the analysis of the gravitational wave spectrum of a vibrating neutron star. Scalar-tensor theories in strong-field gravity can potentially introduce much greater differences in the parameters of a neutron star than the uncertainties introduced by the various equations of state. The detection of gravitational waves from neutron stars can set constraints on the existence and the strength of scalar fields. We show that the oscillation spectrum is dramatically affected by the presence of a scalar field, and can provide unique confirmation of its existence.Comment: 14 pages, 7 figure

    Model-independent test of gravity with a network of ground-based gravitational-wave detectors

    Full text link
    The observation of gravitational waves with a global network of interferometric detectors such as advanced LIGO, advanced Virgo, and KAGRA will make it possible to probe into the nature of space-time structure. Besides Einstein's general theory of relativity, there are several theories of gravitation that passed experimental tests so far. The gravitational-wave observation provides a new experimental test of alternative theories of gravity because a gravitational wave may have at most six independent modes of polarization, of which properties and number of modes are dependent on theories of gravity. This paper proposes a method to reconstruct the independent modes of polarization in time-series data of an advanced detector network. Since the method does not rely on any specific model, it gives model-independent test of alternative theories of gravity

    A New Exponential Gravity

    Full text link
    We propose a new exponential f(R) gravity model with f(R)=(R-\lambda c)e^{\lambda(c/R)^n} and n>3, \lambda\geq 1, c>0 to explain late-time acceleration of the universe. At the high curvature region, the model behaves like the \LambdaCDM model. In the asymptotic future, it reaches a stable de-Sitter spacetime. It is a cosmologically viable model and can evade the local gravity constraints easily. This model share many features with other f(R) dark energy models like Hu-Sawicki model and Exponential gravity model. In it the dark energy equation of state is of an oscillating form and can cross phantom divide line \omega_{de}=-1. In particular, in the parameter range 3< n\leq 4, \lambda \sim 1, the model is most distinguishable from other models. For instance, when n=4, \lambda=1, the dark energy equation of state will cross -1 in the earlier future and has a stronger oscillating form than the other models, the dark energy density in asymptotical future is smaller than the one in the high curvature region. This new model can evade the local gravity tests easily when n>3 and \lambda>1.Comment: 12 pages, 8 figure
    corecore