28 research outputs found

    Def-6, a Guanine Nucleotide Exchange Factor for Rac1, Interacts with the Skeletal Muscle Integrin Chain α7A and Influences Myoblast Differentiation

    Get PDF
    Integrin alpha7beta1 is the major laminin binding integrin receptor of muscle cells. The alpha7 chain occurs in several splice isoforms, of which alpha7A and alpha7B differ in their intracellular domains only. The fact that the expression of alpha7A and alpha7B is tightly regulated during skeletal muscle development suggests different and distinct roles for both isoforms. However, so far, functional properties and interacting proteins were described for the alpha7B chain only. Using a yeast two-hybrid screen, we have found that Def-6, a guanine nucleotide exchange factor for Rac1, binds to the intracellular domain of the alpha7A subunit. The specificity of the Def-6-alpha7A interaction has been shown by direct yeast two-hybrid binding assays and coprecipitation experiments. This is the first description of an alpha7A-specific and -exclusive interaction, because Def-6 did not bind to any other tested integrin cytoplasmic domain. Interestingly, the binding of Def-6 to alpha7A was abolished, when cells were cotransfected with an Src-related kinase, which is known to phosphorylate Def-6 and stimulate its exchange activity. We found expression of Def-6 was not only restricted to T-lymphocytes as described thus far but in a more widespread manner, including different muscle tissues. In cells, Def-6 is seen in newly forming cell protrusions and focal adhesions, and its localization partially overlaps with the alpha7A integrin receptor. C2C12 myoblasts overexpressing Def-6 show a delay of Rac1 inactivation during myogenic differentiation and abnormal myotube formation. Thus, our data suggest a role for Def-6 in the fine regulation of Rac1 during myogenesis with the integrin alpha7A chain guiding this regulation in a spatio-temporal manner

    Deficiency in the LIM-only protein Fhl2 impairs skin wound healing

    Get PDF
    After skin wounding, the repair process is initiated by the release of growth factors, cytokines, and bioactive lipids from injured vessels and coagulated platelets. These signal molecules induce synthesis and deposition of a provisional extracellular matrix, as well as fibroblast invasion into and contraction of the wounded area. We previously showed that sphingosine-1-phosphate (S1P) triggers a signal transduction cascade mediating nuclear translocation of the LIM-only protein Fhl2 in response to activation of the RhoA GTPase (Muller, J.M., U. Isele, E. Metzger, A. Rempel, M. Moser, A. Pscherer, T. Breyer, C. Holubarsch, R. Buettner, and R. Schule. 2000. EMBO J. 19:359–369; Muller, J.M., E. Metzger, H. Greschik, A.K. Bosserhoff, L. Mercep, R. Buettner, and R. Schule. 2002. EMBO J. 21:736–748.). We demonstrate impaired cutaneous wound healing in Fhl2-deficient mice rescued by transgenic expression of Fhl2. Furthermore, collagen contraction and cell migration are severely impaired in Fhl2-deficient cells. Consequently, we show that the expression of α-smooth muscle actin, which is regulated by Fhl2, is reduced and delayed in wounds of Fhl2-deficient mice and that the expression of p130Cas, which is essential for cell migration, is reduced in Fhl2-deficient cells. In summary, our data demonstrate a function of Fhl2 as a lipid-triggered signaling molecule in mesenchymal cells regulating their migration and contraction during cutaneous wound healing

    Reframing Kurtz’s Painting: Colonial Legacies and Minority Rights in Ethnically Divided Societies

    Get PDF
    Minority rights constitute some of the most normatively and economically important human rights. Although the political science and legal literatures have proffered a number of constitutional and institutional design solutions to address the protection of minority rights, these solutions are characterized by a noticeable neglect of, and lack of sensitivity to, historical processes. This Article addresses that gap in the literature by developing a causal argument that explains diverging practices of minority rights protections as functions of colonial governments’ variegated institutional practices with respect to particular ethnic groups. Specifically, this Article argues that in instances where colonial governments politicize and institutionalize ethnic hegemony in the pre-independence period, an institutional legacy is created that leads to lower levels of minority rights protections. Conversely, a uniform treatment and depoliticization of ethnicity prior to independence ultimately minimizes ethnic cleavages post-independence and consequently causes higher levels of minority rights protections. Through a highly structured comparative historical analysis of Botswana and Ghana, this Article builds on a new and exciting research agenda that focuses on the role of long-term historio-structural and institutional influences on human rights performance and makes important empirical contributions by eschewing traditional methodologies that focus on single case studies that are largely descriptive in their analyses. Ultimately, this Article highlights both the strength of a historical approach to understanding current variations in minority rights protections and the varied institutional responses within a specific colonial government

    In Vitro Inhibitory Potential of Different Anthocyanin-Rich Berry Extracts in Murine CT26 Colon Cancer Cells

    No full text
    Anti-oxidant, -inflammatory, and -carcinogenic activities of bioactive plant constituents, such as anthocyanins, have been widely discussed in literature. However, the potential interaction of anthocyanin-rich extracts with routinely used chemotherapeutics is still not fully elucidated. In the present study, anthocyanin-rich polyphenol extracts of blackberry (BB), bilberry (Bil), black currant (BC), elderberry (EB), and their respective main anthocyanins (cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, cyanidin-3-O-rutinoside, and cyanidin-3-O-sambubioside) were investigated concerning their cytotoxic and DNA-damaging properties in murine CT26 cells either alone or in combination with the chemotherapeutic agent SN-38. BB exerted potent cytotoxic effects, while Bil, BC, and EB only had marginal effects on cell viability. Single anthocyanins comprised of the extracts could not induce comparable effects. Even though the BB extract further pronounced SN-38-induced cytotoxicity and inhibited cell adhesion at 100–200 ”g/mL, no effect on DNA damage was observed. In conclusion, anti-carcinogenic properties of the extracts on CT26 cells could be ranked BB >> BC ≄ Bil ≈ EB. Mechanisms underlying the potent cytotoxic effects are still to be elucidated since the induction of DNA damage does not play a role

    New Hepatitis B Virus of Cranes That Has an Unexpected Broad Host Range

    No full text
    All hepadnaviruses known so far have a very limited host range, restricted to their natural hosts and a few closely related species. This is thought to be due mainly to sequence divergence in the large envelope protein and species-specific differences in host components essential for virus propagation. Here we report an infection of cranes with a novel hepadnavirus, designated CHBV, that has an unexpectedly broad host range and is only distantly evolutionarily related to avihepadnaviruses of related hosts. Direct DNA sequencing of amplified CHBV DNA as well a sequencing of cloned viral genomes revealed that CHBV is most closely related to, although distinct from, Ross' goose hepatitis B virus (RGHBV) and slightly less closely related to duck hepatitis B virus (DHBV). Phylogenetically, cranes are very distant from geese and ducks and are most closely related to herons and storks. Naturally occurring hepadnaviruses in the last two species are highly divergent in sequence from RGHBV and DHBV and do not infect ducks or do so only marginally. In contrast, CHBV from crane sera and recombinant CHBV produced from LMH cells infected primary duck hepatocytes almost as efficiently as DHBV did. This is the first report of a rather broad host range of an avihepadnavirus. Our data imply either usage of similar or identical entry pathways and receptors by DHBV and CHBV, unusual host and virus adaptation mechanisms, or divergent evolution of the host genomes and cellular components required for virus propagation

    Beyond the chains that bind: the political crisis of unions in Western Europe

    Get PDF
    The dynamics of neo-liberal restructuring have generated serious tensions in the institutional alignments between social democratic political parties and labor unions in Western Europe. This article explores the origins, development and consequences of the resulting political crisis through a detailed analysis of the institutional alignment of parties and unions in Sweden, Germany, UK and France. The authors reject the argument that the changing contours of the party-union nexus can be understood solely on the basis of a rational choice analysis of labor movement actors in favor of an account that also highlights the importance of historical path dependency and ideological orientation. The resulting complexity of union responses to the crisis of the party-union nexus is explored through the construction of a typology that charts union reorientation along the dimensions of accommodation with, or resistance against, neo-liberalism and within and beyond the national political context. [ABSTRACT FROM PUBLISHER]

    Increased survival rate by local release of diclofenac in a murine model of recurrent oral carcinoma

    Get PDF
    Despite aggressive treatment with radiation and combination chemotherapy following tumor resection, the 5-year survival rate for patients with head and neck cancer is at best only 50%. In this study, we examined the therapeutic potential of localized release of diclofenac from electrospun nanofibers generated from poly(D, L-lactide-co-glycolide) polymer. Diclofenac was chosen since anti-inflammatory agents that inhibit cyclooxygenase have shown great potential in their ability to directly inhibit tumor growth as well as suppress inflammation-mediated tumor growth. A mouse resection model of oral carcinoma was developed by establishing tumor growth in the oral cavity by ultrasound-guided injection of 1 million SCC-9 cells in the floor of the mouth. Following resection, mice were allocated into four groups with the following treatment: 1) no treatment, 2) implanted scaffolds without diclofenac, 3) implanted scaffolds loaded with diclofenac, and 4) diclofenac given orally. Small animal ultrasound and magnetic resonance imaging were utilized for longitudinal determination of tumor recurrence. At the end of 7 weeks following tumor resection, 33% of mice with diclofenac-loaded scaffolds had a recurrent tumor, in comparison to 90%-100% of the mice in the other three groups. At this time point, mice with diclofenac-releasing scaffolds showed 89% survival rate, while the other groups showed survival rates of 10%-25%. Immunohistochemical staining of recurrent tumors revealed a near 10-fold decrease in the proliferation marker Ki-67 in the tumors derived from mice with diclofenac-releasing scaffolds. In summary, the local application of diclofenac in an orthotopic mouse tumor resection model of oral cancer reduced tumor recurrence with significant improvement in survival over a 7-week study period following tumor resection. Local drug release of anti-inflammatory agents should be investigated as a therapeutic option in the prevention of tumor recurrence in oral squamous carcinoma

    Plasmodium falciparum Liver Stage Infection and Transition to Stable Blood Stage Infection in Liver-Humanized and Blood-Humanized FRGN KO Mice Enables Testing of Blood Stage Inhibitory Antibodies (Reticulocyte-Binding Protein Homolog 5) In Vivo

    No full text
    The invention of liver-humanized mouse models has made it possible to directly study the preerythrocytic stages of Plasmodium falciparum. In contrast, the current models to directly study blood stage infection in vivo are extremely limited. Humanization of the mouse blood stream is achievable by frequent injections of human red blood cells (hRBCs) and is currently the only system with which to study human malaria blood stage infections in a small animal model. Infections have been primarily achieved by direct injection of P. falciparum-infected RBCs but as such, this modality of infection does not model the natural route of infection by mosquito bite and lacks the transition of parasites from liver stage infection to blood stage infection. Including these life cycle transition points in a small animal model is of relevance for testing therapeutic interventions. To this end, we used FRGN KO mice that were engrafted with human hepatocytes and performed a blood exchange under immune modulation to engraft the animals with more than 50% hRBCs. These mice were infected by mosquito bite with sporozoite stages of a luciferase-expressing P. falciparum parasite, resulting in noninvasively measurable liver stage burden by in vivo bioluminescent imaging (IVIS) at days 5–7 postinfection. Transition to blood stage infection was observed by IVIS from day 8 onward and then blood stage parasitemia increased with a kinetic similar to that observed in controlled human malaria infection. To assess the utility of this model, we tested whether a monoclonal antibody targeting the erythrocyte invasion ligand reticulocyte-binding protein homolog 5 (with known growth inhibitory activity in vitro) was capable of blocking blood stage infection in vivo when parasites emerge from the liver and found it highly effective. Together, these results show that a combined liver-humanized and blood-humanized FRGN mouse model infected with luciferase-expressing P. falciparum will be a useful tool to study P. falciparum preerythrocytic and erythrocytic stages and enables the testing of interventions that target either one or both stages of parasite infection
    corecore