2,188 research outputs found

    Exact norm-conserving stochastic time-dependent Hartree-Fock

    Full text link
    We derive an exact single-body decomposition of the time-dependent Schroedinger equation for N pairwise-interacting fermions. Each fermion obeys a stochastic time-dependent norm-preserving wave equation. As a first test of the method we calculate the low energy spectrum of Helium. An extension of the method to bosons is outlined.Comment: 21 pages, 3 figures, LaTeX fil

    “some kind of thing it aint us but yet its in us”: David Mitchell, Russell Hoban, and metafiction after the millennium

    Get PDF
    This article appraises the debt that David Mitchell’s Cloud Atlas owes to the novels of Russell Hoban, including, but not limited to, Riddley Walker. After clearly mapping a history of Hoban’s philosophical perspectives and Mitchell’s inter-textual genre-impersonation practice, the article assesses the degree to which Mitchell’s metatextual methods indicate a nostalgia for by-gone radical aesthetics rather than reaching for new modes of its own. The article not only proposes several new backdrops against which Mitchell’s novel can be read but also conducts the first in-depth appraisal of Mitchell’s formal linguistic replication of Riddley Walker

    Whole body interaction in abstract domains

    Get PDF
    Whole Body Interaction appears to be a good fit of interaction style for some categories of application domain, such as the motion capture of gestures for computer games and virtual physical sports. However, the suitability of whole body interaction for more abstract application domains is less apparent, and the creation of appropriate whole body interaction designs for complex abstract areas such as mathematics, programming and musical harmony remains challenging. We argue, illustrated by a detailed case study, that conceptual metaphor theory and sensory motor contingency theory offer analytic and synthetic tools whereby whole body interaction can in principle be applied usefully to arbitrary abstract application domains. We present the case study of a whole body interaction system for a highly abstract application area, tonal harmony in music. We demonstrate ways in which whole body interaction offers strong affordances for action and insight in this domain when appropriate conceptual metaphors are harnessed in the design. We outline how this approach can be applied to abstract domains in general, and discuss its limitations

    First-principles quantum dynamics in interacting Bose gases I: The positive P representation

    Full text link
    The performance of the positive P phase-space representation for exact many-body quantum dynamics is investigated. Gases of interacting bosons are considered, where the full quantum equations to simulate are of a Gross-Pitaevskii form with added Gaussian noise. This method gives tractable simulations of many-body systems because the number of variables scales linearly with the spatial lattice size. An expression for the useful simulation time is obtained, and checked in numerical simulations. The dynamics of first-, second- and third-order spatial correlations are calculated for a uniform interacting 1D Bose gas subjected to a change in scattering length. Propagation of correlations is seen. A comparison is made to other recent methods. The positive P method is particularly well suited to open systems as no conservation laws are hard-wired into the calculation. It also differs from most other recent approaches in that there is no truncation of any kind.Comment: 21 pages, 7 figures, 2 tables, IOP styl

    Suppression of decoherence via strong intra-environmental coupling

    Get PDF
    We examine the effects of intra-environmental coupling on decoherence by constructing a low temperature spin--spin-bath model of an atomic impurity in a Debye crystal. The impurity interacts with phonons of the crystal through anti-ferromagnetic spin-spin interactions. The reduced density matrix of the central spin representing the impurity is calculated by dynamically integrating the full Schroedinger equation for the spin--spin-bath model for different thermally weighted eigenstates of the spin-bath. Exact numerical results show that increasing the intra-environmental coupling results in suppression of decoherence. This effect could play an important role in the construction of solid state quantum devices such as quantum computers.Comment: 4 pages, 3 figures, Revtex fil

    Genetic screening of 202 individuals with congenital limb malformations and requiring reconstructive surgery

    Get PDF
    BACKGROUND: Congenital limb malformations (CLMs) are common and present to a variety of specialties, notably plastic and orthopaedic surgeons, and clinical geneticists. The authors aimed to characterise causative mutations in an unselected cohort of patients with CLMs requiring reconstructive surgery. METHODS: 202 patients presenting with CLM were recruited. The authors obtained G-banded karyotypes and screened EN1, GLI3, HAND2, HOXD13, ROR2, SALL1, SALL4, ZRS of SHH, SPRY4, TBX5, TWIST1 and WNT7A for point mutations using denaturing high performance liquid chromatography (DHPLC) and direct sequencing. Multiplex ligation dependent probe amplification (MLPA) kits were developed and used to measure copy number in GLI3, HOXD13, ROR2, SALL1, SALL4, TBX5 and the ZRS of SHH. RESULTS: Within the cohort, causative genetic alterations were identified in 23 patients (11%): mutations in GLI3 (n = 5), HOXD13 (n = 5), the ZRS of SHH (n = 4), and chromosome abnormalities (n = 4) were the most common lesions found. Clinical features that predicted the discovery of a genetic cause included a bilateral malformation, positive family history, and having increasing numbers of limbs affected (all p<0.01). Additionally, specific patterns of malformation predicted mutations in specific genes. CONCLUSIONS: Based on higher mutation prevalence the authors propose that GLI3, HOXD13 and the ZRS of SHH should be prioritised for introduction into molecular genetic testing programmes for CLM. The authors have developed simple criteria that can refine the selection of patients by surgeons for referral to clinical geneticists. The cohort also represents an excellent resource to test for mutations in novel candidate genes

    Cognitive abilities that predict success in a computer-based training program.

    Get PDF
    PURPOSE: The purposes of this study were (a) to identify cognitive abilities and other factors related to successful completion of training for computer-based tasks that simulated real jobs and (b) to create a brief assessment battery useful in assessing older adults for these kinds of jobs. DESIGN AND METHODS: Participants from three age groups (young, middle-aged, and older) completed a battery of cognitive measures. They then trained on one of three computer-based tasks that simulated actual jobs and were asked to perform the tasks for 3 days. We recorded whether they completed training and whether and how well they did the tasks. In a series of logistic regressions, we evaluated the ability of a subset of cognitive measures drawn from a larger battery to predict participants\u27 ability to successfully complete training and go on to task performance. RESULTS: Results confirmed theory-based expectations that measures of domain knowledge, crystallized intelligence, memory, and psychomotor speed would predict success in computer-based activities. A brief battery was able to predict older adults\u27 successful completion of training for one task but was less useful for another. IMPLICATIONS: A brief battery of cognitive measures may be useful in evaluating individuals for job selection. Different measures are related to job-related criteria depending on task and group evaluated, although it was not possible to identify a reduced battery for one task. The specific cognitive abilities related to participants\u27 success have implications for task and interface design for the elderly population

    Intraindividual variability and falls in older adults

    Get PDF
    Objective: We investigated whether a simple measure of reaction time intraindividual variability (IIV) was associated with falls in older adults. Falls and fall-related injuries represent a major cost to health care systems, it is therefore critically important to find measures that can readily identify older adults at greater risk of falling. Method: Cognitive and motor function were investigated in 108 adults aged 53 to 93 years (M= 73.49) recruited across the local community and hospital outpatient department. Forty-two participants had experienced either an injurious fall, or multiple falls, in the previous two years. Results: Logistic regression suggested that fallers could be distinguished from non-fallers by greater medication use, IIV, postural sway, weaker grip strength and slower gait speed. Structural equation models revealed that IIV as predictive of falls via the mediating variable of motor function (e.g., gait). IIV also predicted higher-order cognition (executive function) but higher-order cognitive function did not uniquely predict falls or account for the associations between IIV and falls. Conclusions: These findings indicate that IIV measures capture important aspects of cognitive and motor decline and may have considerable potential in identifying older adults at risk of falling in healthcare and community settings
    • …
    corecore