148 research outputs found

    Drug transport mechanism of P-glycoprotein monitored by single molecule fluorescence resonance energy transfer

    Full text link
    In this work we monitor the catalytic mechanism of P-glycoprotein (Pgp) using single-molecule fluorescence resonance energy transfer (FRET). Pgp, a member of the ATP binding cassette family of transport proteins, is found in the plasma membrane of animal cells where it is involved in the ATP hydrolysis driven export of hydrophobic molecules. When expressed in the plasma membrane of cancer cells, the transport activity of Pgp can lead to the failure of chemotherapy by excluding the mostly hydrophobic drugs from the interior of the cell. Despite ongoing effort, the catalytic mechanism by which Pgp couples MgATP binding and hydrolysis to translocation of drug molecules across the lipid bilayer is poorly understood. Using site directed mutagenesis, we have introduced cysteine residues for fluorescence labeling into different regions of the nucleotide binding domains (NBDs) of Pgp. Double-labeled single Pgp molecules showed fluctuating FRET efficiencies during drug stimulated ATP hydrolysis suggesting that the NBDs undergo significant movements during catalysis. Duty cycle-optimized alternating laser excitation (DCO-ALEX) is applied to minimize FRET artifacts and to select the appropriate molecules. The data show that Pgp is a highly dynamic enzyme that appears to fluctuate between at least two major conformations during steady state turnover.Comment: 10 pages, 7 figure

    A cryoelectron microscopy study of the interaction of the Escherichia coli F1-ATPase with subunit b dimer

    Get PDF
    AbstractA complex between the Escherichia coli F1-ATPase and a truncated form of the ECF0-b subunit was formed and examined by cryoelectron microscopy in amorphous ice. Image analysis of single particles in the hexagonal projection revealed that the polar domain of the b subunit interacts with a β subunit different from the one which interacts with the ϵ subunit. The cavity in the enzyme, visible in the hexagonal projection, is not filled by the b polypeptide, therefore leaving enough room for extensive conformational changes of the γ and ϵ subunits within the native F1F0 complex

    Crystal Structure of the Yeast Vacuolar ATPase Heterotrimeric EGChead Peripheral Stalk Complex

    Get PDF
    SummaryVacuolar ATPases (V-ATPases) are multisubunit rotary motor proton pumps that function to acidify subcellular organelles in all eukaryotic organisms. V-ATPase is regulated by a unique mechanism that involves reversible dissociation into V1-ATPase and Vo proton channel, a process that involves breaking of protein interactions mediated by subunit C, the cytoplasmic domain of subunit “a” and three “peripheral stalks,” each made of a heterodimer of E and G subunits. Here, we present crystal structures of a yeast V-ATPase heterotrimeric complex composed of EG heterodimer and the head domain of subunit C (Chead). The structures show EG heterodimer folded in a noncanonical coiled coil that is stabilized at its N-terminal ends by binding to Chead. The coiled coil is disrupted by a bulge of partially unfolded secondary structure in subunit G and we speculate that this unique feature in the eukaryotic V-ATPase peripheral stalk may play an important role in enzyme structure and regulation by reversible dissociation

    The stator complex of the A1A0-ATP synthase--structural characterization of the E and H subunits.

    Get PDF
    Archaeal ATP synthase (A-ATPase) is the functional homolog to the ATP synthase found in bacteria, mitochondria and chloroplasts, but the enzyme is structurally more related to the proton-pumping vacuolar ATPase found in the endomembrane system of eukaryotes. We have cloned, overexpressed and characterized the stator-forming subunits E and H of the A-ATPase from the thermoacidophilic Archaeon, Thermoplasma acidophilum. Size exclusion chromatography, CD, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and NMR spectroscopic experiments indicate that both polypeptides have a tendency to form dimers and higher oligomers in solution. However, when expressed together or reconstituted, the two individual polypeptides interact with high affinity to form a stable heterodimer. Analyses by gel filtration chromatography and analytical ultracentrifugation show the heterodimer to have an elongated shape, and the preparation to be monodisperse. Thermal denaturation analyses by CD and differential scanning calorimetry revealed the more cooperative unfolding transitions of the heterodimer in comparison to those of the individual polypeptides. The data are consistent with the EH heterodimer forming the peripheral stalk(s) in the A-ATPase in a fashion analogous to that of the related vacuolar ATPase

    Mutations on the N-terminal edge of the DELSEED loop in either the α or β subunit of the mitochondrial F 1 -ATPase enhance ATP hydrolysis in the absence of the central γ rotor

    Get PDF
    F1-ATPase is a rotary molecular machine with a subunit stoichiometry of α3 β3 γ1 δ1 ε1. It has a robust ATP-hydrolyzing activity due to effective cooperativity between the three catalytic sites. It is believed that the central γ rotor dictates the

    Mode competition in broad-ridge-waveguide lasers

    Get PDF
    The lateral brightness achievable with high-power GaAs-based laser diodes having long and broad waveguides is commonly regarded to be limited by the onset of higher-order lateral modes. For the study of the lateral-mode competition two complementary simulation tools are applied, representing different classes of approximations. The first tool bases on a completely incoherent superposition of mode intensities and disregards longitudinal effects like spatial hole burning, whereas the second tool relies on a simplified carrier transport and current flow. Both tools yield agreeing power-current characteristics that fit the data measured for 5 to 23 µm wide ridges. Also, a similarly good qualitative conformance of the near and far fields is found. However, the threshold of individual modes, the partition of power between them at a given current, and details of the near and far fields show differences. These differences are the consequence of a high sensitivity of the mode competition to details of the models and of the device structure. Nevertheless, it can be concluded concordantly that the brightness rises with increasing ridge width irrespective of the onset of more and more lateral modes. The lateral brightness 2W · mm¯¹ 1mrad¯¹ at 10MW · cm¯²2 power density on the front facet of the investigated laser with widest ridge (23 µm) is comparable with best values known from much wider broad-area lasers. In addition, we show that one of the simulation tools is able to predict beam steering and coherent bea

    Effect of fluid resuscitation on mortality and organ function in experimental sepsis models

    Get PDF
    Introduction Several recent studies have shown that a positive fluid balance in critical illness is associated with worse outcome. We tested the effects of moderate vs. high-volume resuscitation strategies on mortality, systemic and regional blood flows, mitochondrial respiration, and organ function in two experimental sepsis models. Methods 48 pigs were randomized to continuous endotoxin infusion, fecal peritonitis, and a control group (n = 16 each), and each group further to two different basal rates of volume supply for 24 hours [moderate-volume (10 ml/kg/h, Ringer's lactate, n = 8); high-volume (15 + 5 ml/kg/h, Ringer's lactate and hydroxyethyl starch (HES), n = 8)], both supplemented by additional volume boli, as guided by urinary output, filling pressures, and responses in stroke volume. Systemic and regional hemodynamics were measured and tissue specimens taken for mitochondrial function assessment and histological analysis. Results Mortality in high-volume groups was 87% (peritonitis), 75% (endotoxemia), and 13% (controls). In moderate-volume groups mortality was 50% (peritonitis), 13% (endotoxemia) and 0% (controls). Both septic groups became hyperdynamic. While neither sepsis nor volume resuscitation strategy was associated with altered hepatic or muscle mitochondrial complex I- and II-dependent respiration, non-survivors had lower hepatic complex II-dependent respiratory control ratios (2.6 +/- 0.7, vs. 3.3 +/- 0.9 in survivors; P = 0.01). Histology revealed moderate damage in all organs, colloid plaques in lung tissue of high-volume groups, and severe kidney damage in endotoxin high-volume animals. Conclusions High-volume resuscitation including HES in experimental peritonitis and endotoxemia increased mortality despite better initial hemodynamic stability. This suggests that the strategy of early fluid management influences outcome in sepsis. The high mortality was not associated with reduced mitochondrial complex I- or II-dependent muscle and hepatic respiration
    corecore