3,490 research outputs found
Momentum distributions in time-dependent density functional theory: Product phase approximation for non-sequential double ionization in strong laser fields
We investigate the possibility to deduce momentum space properties from
time-dependent density functional calculations. Electron and ion momentum
distributions after double ionization of a model Helium atom in a strong
few-cycle laser pulse are studied. We show that, in this case, the choice of
suitable functionals for the observables is considerably more important than
the choice of the correlation potential in the time-dependent Kohn-Sham
equations. By comparison with the solution of the time-dependent Schroedinger
equation, the insufficiency of functionals neglecting electron correlation is
demonstrated. We construct a functional of the Kohn-Sham orbitals, which in
principle yields the exact momentum distributions of the electrons and the ion.
The product-phase approximation is introduced, which reduces the problem of
approximating this functional significantly.Comment: 8 pages, 5 figures, RevTeX
Can real-time visual feedback during gait retraining reduce metabolic demand for individuals with transtibial amputation?
The metabolic demand of walking generally increases following lower extremity amputation. This study used real-time visual feedback to modify biomechanical factors linked to an elevated metabolic demand of walking in individuals with transtibial amputation. Eight persons with unilateral, traumatic transtibial amputation and 8 uninjured controls participated. Two separate bouts of real-time visual feedback were provided during a single session of gait retraining to reduce 1) center of mass sway and 2) thigh muscle activation magnitudes and duration. Baseline and post-intervention data were collected. Metabolic rate, heart rate, frontal plane center of mass sway, quadriceps and hamstrings muscle activity, and co-contraction indices were evaluated during steady state walking at a standardized speed. Visual feedback successfully decreased center of mass sway 12% (p = 0.006) and quadriceps activity 12% (p = 0.041); however, thigh muscle co-contraction indices were unchanged. Neither condition significantly affected metabolic rate during walking and heart rate increased with center-of-mass feedback. Metabolic rate, center of mass sway, and integrated quadriceps muscle activity were all not significantly different from controls. Attempts to modify gait to decrease metabolic demand may actually adversely increase the physiological effort of walking in individuals with lower extremity amputation who are young, active and approximate metabolic rates of able-bodied adults
Dense Suspension Splat: Monolayer Spreading and Hole Formation After Impact
We use experiments and minimal numerical models to investigate the rapidly
expanding monolayer formed by the impact of a dense suspension drop against a
smooth solid surface. The expansion creates a lace-like pattern of particle
clusters separated by particle-free regions. Both the expansion and the
development of the spatial inhomogeneity are dominated by particle inertia,
therefore robust and insensitive to details of the surface wetting, capillarity
and viscous drag.Comment: 4 pages (5 with references), and a total of 4 figure
Reconstructing Gaussian bipartite states with a single polarization-sensitive homodyne detector
We present a novel method to fully estimate Gaussian bipartite polarization states using only a single homodyne detector. Our approach is based on [Phys. Rev. Lett. 102, 020502 (2009)], but circumvents additional optics, and thereby losses, in the signal path. We provide an intuitive explanation of our scheme without needing to define auxiliary modes. With six independent measurements, we fully reconstruct the state’s covariance matrix. We validate our method by comparing it to a conventional dual-homodyne measurement scheme
Precision spectroscopy of the 3s-3p fine structure doublet in Mg+
We apply a recently demonstrated method for precision spectroscopy on strong
transitions in trapped ions to measure both fine structure components of the
3s-3p transition in 24-Mg+ and 26-Mg+. We deduce absolute frequency reference
data for transition frequencies, isotope shifts and fine structure splittings
that are in particular useful for comparison with quasar absorption spectra,
which test possible space-time variations of the fine structure constant. The
measurement accuracy improves previous literature values, when existing, by
more than two orders of magnitude
TRACK-a new algorithm and open-source tool for the analysis of pursuit-tracking sensorimotor integration processes.
In daily life, sensorimotor integration processes are fundamental for many cognitive operations. The pursuit-tracking paradigm is an ecological and valid paradigm to examine sensorimotor integration processes in a more complex environment than many established tasks that assess simple motor responses. However, the analysis of pursuit-tracking performance is complicated, and parameters quantified to examine performance are sometimes ambiguous regarding their interpretation. We introduce an open-source algorithm (TRACK) to calculate a new tracking error metric, the spatial error, based on the identification of the intended target position for the respective cursor position. The identification is based on assigning cursor and target direction changes to each other as key events, based on the assumptions of similarity and proximity. By applying our algorithm to pursuit-tracking data, beyond replication of known effects such as learning or practice effects, we show a higher precision of the spatial tracking error, i.e., it fits our behavioral data better than the temporal tracking error and thus provides new insights and parameters for the investigation of pursuit-tracking behavior. Our work provides an important step towards fully utilizing the potential of pursuit-tracking tasks for research on sensorimotor integration processes. [Abstract copyright: © 2023. The Author(s).
The neurophysiology of continuous action monitoring.
Monitoring actions is essential for goal-directed behavior. However, as opposed to short-lasting, and regularly reinstating monitoring functions, the neural processes underlying continuous action monitoring are poorly understood. We investigate this using a pursuit-tracking paradigm. We show that beta band activity likely maintains the sensorimotor program, while theta and alpha bands probably support attentional sampling and information gating, respectively. Alpha and beta band activity are most relevant during the initial tracking period, when sensorimotor calibrations are most intense. Theta band shifts from parietal to frontal cortices throughout tracking, likely reflecting a shift in the functional relevance from attentional sampling to action monitoring. This study shows that resource allocation mechanisms in prefrontal areas and stimulus-response mapping processes in the parietal cortex are crucial for adapting sensorimotor processes. It fills a knowledge gap in understanding the neural processes underlying action monitoring and suggests new directions for examining sensorimotor integration in more naturalistic experiments. [Abstract copyright: © 2023 The Author(s).
- …