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Abstract: We present a novel method to fully estimate Gaussian bipartite polarization states
using only a single homodyne detector. Our approach is based on [Phys. Rev. Lett. 102, 020502
(2009)], but circumvents additional optics, and thereby losses, in the signal path. We provide
an intuitive explanation of our scheme without needing to define auxiliary modes. With six
independent measurements, we fully reconstruct the state’s covariance matrix. We validate our
method by comparing it to a conventional dual-homodyne measurement scheme.
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1. Introduction

Bipartite Gaussian states increasingly gain importance as a reliable resource for numerous
quantum technologies. The need for continuous-wave bipartite (entangled) states reaches
from gravitational wave metrology [1,2] over quantum communication [3] including quantum
teleportation [4,5] to quantum imaging [6,7]. For a full state characterization, the covariance
matrix of the bipartite state needs to be measured. It contains the complete entanglement
information and, therefore, allows to determine the quality of the state.

To reconstruct the covariance matrix of a bipartite Gaussian state, usually a homodyne
measurement is performed. The measurement process destroys the optical quantum state and,
in return, provides information needed to reconstruct the covariance matrix of the state. Any
quantum decoherence arising before (e.g., due to lossy optics) or during the detection process
(e.g., due to non-unitary detection efficiency) will degrade the reconstruction fidelity and should
be avoided.

We consider Gaussian two-mode squeezed states where for specific combinations of quadratures
the noise is reduced below the classical limit. Traditionally, these states are detected with a
dual-homodyne scheme, which effectively measures both modes individually before the signals
are electrically combined [8–11]. However, the full covariance matrix can also be obtained
by using only a single homodyne detector (HD) [12,13]. The method demonstrated in [14]
requires the measurement of additionally defined modes which need to be detected in a series of
different measurements. In [14] the detection scheme itself inherently introduces decoherence.
The two-mode squeezed state needs to pass through up to three additional optical components,
introducing optical loss, even though on a small scale, degrading the bipartite state’s quality
before its detection.

In this letter, we present an advanced single-homodyne detection scheme to reconstruct the
full covariance matrix of a two-mode squeezed state generated by a polarization-non-degenerate
optical parametric oscillator (NDOPO). To measure variances of different combinations of
quadratures, our technique requires six measurements with differently polarized local oscillators.
We provide an intuitive explanation of our scheme. Compared to [14], the state under consideration
does not pass three additional optics, typically introducing an optical loss of about 0.5 %. Thus,
our state deteriorates less on the way to the detection, avoiding decoherence. While this effect is
small for currently achieved polarization bipartite states, it becomes relevant once two-mode
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squeezing levels reach performance of the current single-mode squeezers [15]. In addition, we
were able to reduce the number of required optical components. With our measurement, we show
that the estimated two-mode squeezed state fulfills the Duan criterion [16] and the Reid criterion
[17] demonstrating the Einstein-Podolsky-Rosen (EPR) paradox. To confirm our method, we
compare our results to a measurement with a conventional dual-homodyne scheme.

2. Theoretical background

We consider bipartite two-mode squeezed Gaussian states with s- and p-polarized non-degenerate
modes as and ap. The state is described by a set of canonical operators X = (xs

1, xs
2, xp

1, xp
2), with

amplitude quadratures xj
1 = (aj + a†j ) and phase quadratures xj

2 = i(aj − a†j ) with j = {s, p}. An
arbitrary quadrature operator measured in a reference system rotated by α can be written as
xj
α = xj

1 cosα + xj
2 sinα.

Gaussian states are fully characterized by their first and second moments [18]. The first
moments d are defined as dk = ⟨Xk⟩ and vanish for undisplaced states, e.g. for squeezed vacuum.
The second moments are represented in the covariance matrix σ and contain the full information
about the (quantum) noise and the entanglement. The covariance matrix is a real symmetric
positive matrix defined as
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For a coherent state all covariances (the off-diagonal elements) vanish and the covariance
matrix has a diagonal form with σ = diag(1, 1, 1, 1). For a polarization two-mode squeezed state
the covariance matrix is not diagonal due to correlations between the quadratures. Instead of
squeezing, an amplified noise will be visible when looking only at variances of single quadratures.
However, we measure squeezing in the combined quadrature variances, e.g. var (xs

1 ± xp
1) and

var (xs
2 ± xp

2). These combined variances are connected via the identity

var xi ± xj = var xi + var xj ± 2 cov xi, xj (2)

to the covariance matrix with σi,k = cov xi, xj. The covariance matrix of any N-mode Gaussian
state can be visualized by the Wigner function [19] defined as in [20]

W(X) = 1
πN

√︁
det(σ)

e−(X−d)⊤σ−1(X−d). (3)

3. Reconstruction method

Homodyne detection is a standard technique to quantify the noise of a quantum state. In a
balanced homodyne detection, see Fig. 1, the signal mode a is sent onto a 50/50 beam splitter
where it interferes with a strong local oscillator (LO). The two output fields of the beam splitter
are detected on two individual photodiodes. The photocurrents are subtracted and converted
into a voltage ∆u that is monitored on a spectrum analyzer. The part of mode a to be measured
is selected by the specific mode characteristics of the LO b (such as spatial mode shape and
polarization), as only the projection of a onto b interferes with b and is amplified by b to detectable
powers. Changes in the local oscillator’s characteristics thus lead to detecting different parts of
mode a. This is an important insight towards understanding the detection scheme. Considering
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single-mode fields, the detection phase determines the measured readout quadrature, e.g., phase
or amplitude quadrature.
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Fig. 1. Basic setup of our single HD reconstruction method. The LO is transmitted by a
half-wave and a quarter-wave plate and experiences a phase shift ϕ. Then, the orthogonal
polarization contributions of the LO bs and bp interfere with the corresponding fields of
the signal as and ab on a 50/50 beam splitter. The powers are measured on a HD where the
difference voltage ∆u is sent to a spectrum analyzer to quantify its variance. BS: 50/50 beam
splitter, LO: local oscillator, HD: homodyne detector

For a polarization non-degenerate two-mode field, the readout quadrature combination can be
determined by changing the magnitude and phase of the s-pol and p-polarization component
of the LO, namely by adjusting its polarization. We now need to find the local oscillator’s
polarization states required to gain full knowledge of the covariance matrix described in (1).
With a purely s-polarized LO b = (bs, 0), the detection scheme is only sensitive to the s-polarized
part of the signal beam. A LO with s- and p- polarization components b = (bs, bs) measures
different linear combinations of the two modes as and ap, depending on the phase difference of
the LO modes bs and bp. In this sense, the single HD can also be interpreted as two independent
HD detectors separated in polarization, sharing the same photodiodes.

As we will show in the following, six measurements with the below polarization states of the
LO are sufficient to reconstruct the covariance matrix.

linear p: blp = (0, b) for var xp
φ

(4a)

linear s: bls = (b, 0) for var xs
φ

(4b)

diagonal + π/4 : blr = b/
√

2 (1, 1) for var (xp
φ + xs

φ) (4c)

diagonal − π/4 : bll = b/
√

2 (−1, 1) for var (xp
φ − xs

φ) (4d)

left circular: bcl = b/
√

2 (1, i) for var (xp
φ − xs

φ+π/2)
(4e)

right circular: bcr = b/
√

2 (1,−i) for var (xp
φ + xs

φ+π/2). (4f)

For the calculation, we decompose the field operators a and b in a constant and a fluctuating
term: a =

⟨︁
a
⟩︁
+ δa and b =

⟨︁
b
⟩︁
+ δb. Since the LO is much more intense than the signal with⟨︁

b⟩ ≫
⟨︁
a⟩ we neglect ⟨a⟩ terms as well as all higher-order δ2 terms. Finally, we compute the

variance of the difference voltage var ∆u of the homodyne detection that is later monitored by a
spectrum analyzer.

First, we consider the case when the LO is in a linear s- or p-polarized state, see Eqs. (4a, 4b).
For a p-polarized LO we find var ∆u = var xp

φ , and for an s-polarized LO, var ∆u = var xs
φ . For

the specific phases ϕ = 0 and ϕ = π/2, we obtain the four main diagonal elements σi,i of the
covariance matrix. When we set the local oscillators phase to ϕ = π/4 and again measure var ∆u,
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we can compute the σ1,2 = σ2,1 and σ3,4 = σ4,3 entries of the covariance matrix by using our
already reconstructed main diagonal entries of the covariance matrix and the identity [21]

var xj
φ=π/4 =

1
2
(︁
var xj

1 + var xj
2 + 2 cov xj

1, xj
2
)︁
. (5)

Following this procedure, the first six independent entries (in (1) in red dotted) of the covariance
matrix can be obtained.

Second, we prepare the LO in a ±π/4 linearly rotated polarization state, see Eqs. (4c, 4d). We
measure the sum (difference) of amplitude or phase quadratures of both contributing modes,
which is given by var ∆u = var xp

φ ± xs
φ. This is an elegant method to directly detect the sum

(difference) of the same quadrature of modes with orthogonal polarizations. Now, the detector
simultaneously detects the s- and p-polarized contributions and thus directly adds the quadratures.
We can compute the σ1,3 = σ3,1 and the σ2,4 = σ4,2 entries by taking the main diagonal entries
of the covariance matrix and (2). This procedure results in two more independent entries of the
covariance matrix (in (1) in green solid).

Third and lastly, we prepare the LO in a right (left) circular polarized state, see Eqs. (4e,
4f). Now, mixing between quadratures and polarization modes occurs, which can be seen by
var ∆u = var (xp

φ ± xs
φ+π/2). To compute the missing σ1,4 = σ4,1 and σ2,3 = σ3,2 entries, we

again use the main diagonal elements from the first part and the identity from (2). This way, the
last two independent entries (in (1) in blue dashed) are obtained, leading to a fully reconstructed
covariance matrix.

4. Experimental setup

The measured two-mode squeezed state is generated by a polarization non-degenerate optical
parametric oscillator (NDOPO) as shown in Fig. 2. The NDOPO is similar to the (OPO)
presented in [22]. It consists of an input/output mirror with power reflectivity of Rin = 0.95 and
three highly-reflective mirrors for the fundamental wavelength 1064 nm. The cavity is kept on
resonance for 1064 nm by applying the Pound-Drever-Hall technique (not shown in Fig. 2). We
measured the cavity linewidth to be 1.7 MHz. The optical round-trip length of the cavity is
1.522 m, which leads to a free spectral range of 197.0 MHz.
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Fig. 2. Experimental setup consisting of generation and detection stage. We either detect the
two-mode squeezed state with a single HD (bottom box) or, using the flipping mirror Mflip,
with a dual HD. NDOPO: non-degenerate optical parametric oscillator, PD: photo detector,
M: mirror, PBS: polarizing beam splitter, BS: 50/50 beam splitter, LO: local oscillator, HD:
homodyne detector.
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The core element of the NDOPO is a 1 mm × 2 mm × 10 mm (PPKTP) crystal for the non-
linear type II down-conversion process, see Fig. 2. The optimal phase-matching condition for the
down-conversion process is ensured by temperature controlling the larger left (8 mm) part of
the crystal to TDC = 30◦c. Since the birefringent crystal is wedged, we can roughly adjust the
degeneracy point of the two polarization resonances by carefully shifting it perpendicularly to the
cavity beam axis and thus changing the optical path length inside the crystal. Fine-tuning of the
degree of degeneracy can be achieved by changing the temperature TPD ≈ TDC of the right (2 mm)
part of the crystal by less than ±1◦c. We inject 650 mW of 532 nm pump light in a single-pass
configuration. The pump phase can be locked to a seed field by detecting its de-amplification on
the photodiode PD as in [23]. Also shown in Fig. 2 is the detection scheme for the two-mode
squeezed state. To reconstruct the covariance matrix we can either use the conventional dual
homodyne scheme or measure the state with our approach based on a single HD.

5. Reconstruction results

In this section, we explain how we have taken the measurements and present and discuss our
reconstructed covariance matrices. We can employ the conventional dual-homodyne approach by
using the flipping mirror Mflip in Fig. 2. In this case, the s- and p-polarization contributions of
the signal are split by a polarising beam splitter (PBS) and are detected by the two individual
homodyne detectors HD1 and HD2. With mirrors clamped onto piezoelectric elements, we can
change the two detection phases, respectively. By combining the voltages from both homodyne
detectors for different phases ϕ1 and ϕ2 of the s-polarized LO1 and the p-polarized LO2, the
covariance matrix can be reconstructed [8,11].

To utilize the single HD approach, we send the signal beam directly onto the HD. Here, the
signal interferes with the LO, whose particular polarization state is prepared with a half-wave
and a quarter wave-plate. We use the six differently polarized local oscillator fields to take
our measurements as explained in Section 3. The polarization states are generated by using
motorized pre-calibrated rotation mounts for the two waveplates. By tuning the piezoelectric
element (PZT), we change the relative phase ϕ between the local oscillator and the two-mode
squeezed state (signal), as depicted in Fig. 2. The difference voltage ∆u of the HD is measured
with a spectrum analyzer [Keysight, N9020A MXA], and the trace is plotted in Fig. 3. We
have taken the measurements over a zero span at 197 MHz, which is the first free spectral range
frequency of the NDOPO. The measurements are normalized to shot noise and the electronic
dark noise (which was roughly 15 dB below the shot noise) is subtracted. Each colored trace
shows the signal’s noise for a specific polarization state of the LO. For a purely s- or p-polarized
LO, we observe the thermal noise characteristic of the state. The marginal dependence on the
phase ϕ is probably due to a remaining mismatch between polarization bases of signal and local
oscillator. For the other four polarizations we observed a squeezed noise of −6.7(2) dB and an
anti-squeezed noise of 12.8(2) dB. Here, we took up to six data points for each required variance.
Thus, we average over the measurement time of 0.8 s, to get a higher precision for the entries in
the covariance matrix.

When using the dual-homodyne scheme to analyze the two-mode squeezed state, we obtain
measurements similar to those as shown in Fig. 3. We measured the s-pol and p-polarization
thermal states by using only one of the two homodyne detectors. If we monitor the combined
signal behind an electronic adder [Mini-Circuits, ZFSC-2-5-S+], we obtain variances of different
quadrature combinations. For each measurement, we locked the detection phase of one HD (e.g.
ϕ1 on HD1) and ramped the other detection phase (ϕ2). Following this procedure, we can also
reconstruct the full covariance matrix of the same two-mode squeezed state.

The reconstructed covariance matrices for the single HD and dual HD schemes are shown
in Fig. 4. The entries are average values calculated over the full measurement time. We found
both covariance matrices exhibiting well-matching entries within the statistical measurement
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Fig. 3. Zero-span measurements taken with the single homodyne detector for six different
polarization states of the local oscillator at 197 MHz, normalized on shot noise. We observe
a squeezed level of −6.7 dB and an anti-squeezing level of 12.8 dB. Resolution bandwidth:
200 kHz, video bandwidth: 100 kHz.

uncertainties. For the main-diagonal entries, the standard deviation is at most 0.2, according
to our statistics from taking several data points per trace. The uncertainty for the off-diagonal
entries in the covariance matrix (CM) is up to a factor of 4 larger because they were indirectly
obtained. In the following, we elaborate on the potential origins dominating the measurement
uncertainties.
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Fig. 4. Comparison of the reconstructed covariance matrices obtained from measurements
with the single homodyne detector (left) and the dual homodyne detector (right) approach.
We observe nearly identical results for both approaches.

Since our single-homodyne measurements work with a polarization-sensitive local oscillator,
they require reliable polarization optics. The beam splitter should have an equal splitting ratio
of 50/50 for both polarizations for a precise reconstruction. Usually, this can be realized with
the appropriate coating and careful alignment of the angle of incidence. In our experiment
we could achieve Rs ≈ Rp ≈ 50% with a precision of ±0.5%. Another important factor is the
polarization accuracy of the LO and how well it matches the signal’s polarization basis. The
motorized rotations mounts [Thorlabs, ELL14] have an adjustment precision of ±0.3% to tune
the ellipticity and rotation angle of the LO. The polarization was monitored by a polarimeter
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[Thorlabs, PAX1000IR1]. However, these mentioned experimental uncertainties do not dominate
the errors in the covariance matrix.

For the single-homodyne detection, the polarization state of the two-mode squeezed state is
highly important when it interferes with the local oscillator at the beam splitter. Ideally, the
two-mode squeezed state is diagonally linearly polarized. However, the polarization state changes
due to any polarization non-degeneracy effects. One origin could be an asymmetric propagation
phase for s- and p-polarization arising from mirror reflections, which is a static effect. Additionally,
a slightly fluctuating resonance condition of the NDOPO for s- and p-polarization could also
dynamically change their phase relation (the polarization state) but also their magnitudes (the
squeezing degree). In our setup, this might be the case, most likely due to small temperature
fluctuations in the crystal. This effect which originates from the NDOPO source and not from
the detection scheme, dominates the uncertainties in the covariance matrices.

The comparison of both covariance matrices in Fig. 4 indicates that the state obtained by the
dual HD method is slightly more squeezed. The main differences between the two detection setups
are that, firstly, the propagation efficiencies for the three beam paths (to single HD vs. reflected
at the PBS vs. transmitted at the PBS) are slightly different. Secondly, we measured slightly
different visibilities (VIS) for the three homodyne detectors (VIS1HD = 99%, VIS2HD,s = 98%,
VIS2HD,p = 99%). However, these differences do not explain why the state detected with the dual
HD method is slightly more squeezed. A better explanation is that the two-mode squeezed state
becomes slightly elliptical polarized when it travels to the detector, as explained in the previous
paragraph. A non-degrading elliptical polarized two-mode squeezed state is only a problem
when using the single HD method.

We visualize the covariance matrix obtained from the single HD method in Fig. 5 by plotting
the Wigner functions using Eq. (3) with N = 1. The Wigner functions W(xs

1, xp
1) and W(xs

2, xp
2)

show squeezed states representing anti-correlated quadratures xs
1, xp

1 and correlated quadratures
xs

2, xp
2. These two Wigner functions are squeezed by a factor of 0.20 and 0.21, respectively.

We observe thermal states for W(xs
1, xs

2) and W(xp
2, xp

1). Due to the strong similarity of the two
covariance matrices, the Wigner functions for the dual HD case look nearly identical and are
omitted here.

������

���

���

��� ��	


��


���


��



�
�




���

��


���

�� � 
������ �� � 
������

�� � 
������ �� � 
������

Fig. 5. Gaussian Wigner functions for different combinations of the four quadrature modes
xp
1, xp

2, xs
1 and xs

2. The distributions are plotted by using Eq. (1) and the reconstructed
covariance matrix from our measurements with a single HD from Fig. 4.

To complete, we investigate our reconstructed two-mode squeezed state on inseparability
and entanglement when we measure with a single HD. With our single HD approach, we
can test these criteria directly, since we directly measure the required variances, see Sec-
tion 3. We find a value of 0.42 ± 0.02 for the left hand side of the equation for the Duan
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criterion var (xs
1 + xp

1) + var (xs
2 − xp

2)<2 [16], falling a factor of roughly 4.8 below this crite-
rion. The criterion from Reid can be seen as an inferred Heisenberg uncertainty relation with
var (xs

1 + xp
1) × var (xs

2 − xp
2)<1 [17]. Using our reconstructed covariance matrix, the left hand

side reads 0.044 ± 0.003, surpassing the Reid criterion by a factor of roughly 23, which clearly
demonstrates the EPR paradox.

6. Discussion and conclusion

Finally, we discuss the drawbacks and the advantages of using our demonstrated single HD
approach. The technical drawback of the single HD reconstruction method is its susceptibility to
polarization inaccuracies. This applies for the beam splitter, which has to be equally reflective
for s- and p-polarization, but also the matching of the polarization bases of LO and signal.
Moreover, our scheme is sensitive to the actual phase delay between both fields, which potentially
explains the slightly reduced squeezing values for the single HD measurements compared to those
measured with the dual HD. However, our demonstrated method has some advantages compared
to [14]. With the motorized rotation mounts, our measurements can be taken very fast. The most
significant benefit is that we do not send the state under estimation through components other
than the beam splitter, as this would introduce additional and unwanted decoherence. Typically,
these losses are in the order of 0.5% for three optical components in transmission. They are small
with respect to the total losses shown here. However, with increasing performance these losses
become a more significant contribution to the loss budget - [15] showed a total loss of 2.5 % in a
single-mode setup.

We have demonstrated a full Gaussian state estimation of a two-mode squeezed state by
measurements with a single homodyne detector. Our detection scheme is similar to the method
demonstrated in [14]. We use six different polarization states of the local oscillator, with each
one measuring a particular combination of variances. These measurements allow us to fully
reconstruct the covariance matrix of the two-mode squeezed state. The advantage of our method
compared to [14] is that the state under estimation deteriorates less on the way to the homodyne
detector because we avoid the transmission through of optical components (two waveplates and a
polarising beam splitter), thereby retaining more coherence. To confirm our method, we compare
our results to a measurement taken with a conventional dual-homodyne scheme. Our presented
approach is an intuitive, low-loss alternative for characterizing bipartite polarization states.
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