233 research outputs found

    Differentiating between hydrothermal and diagenetic carbonate using rare earth element and yttrium (REE+Y) geochemistry: a case study from the Paleoproterozoic George Fisher massive sulfide Zn deposit, Mount Isa, Australia

    Get PDF
    Carbonate minerals are ubiquitous in most sediment-hosted mineral deposits. These deposits can contain a variety of carbonate types with complex paragenetic relationships. When normalized to chondritic values (CN), rare-earth elements and yttrium (REE+YCN) can be used to constrain fluid chemistry and fluid-rock interaction processes in both low- and high-temperature settings. Unlike other phases (e.g., pyrite), the application of in situ laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) data to the differentiation of pre-ore and hydrothermal carbonates remains relatively untested. To assess the potential applicability of carbonate in situ REE+Y data, we combined transmitted light and cathodoluminescence (CL) petrography with LA-ICP-MS analysis of carbonate mineral phases from (1) the Proterozoic George Fisher clastic dominated (CD-type) massive sulfide deposit and from (2) correlative, barren host rock lithologies (Urquhart Shale Formation). The REE+YCN composition of pre-ore calcite suggests it formed during diagenesis from diagenetic pore fluids derived from ferruginous, anoxic seawater. Hydrothermal and hydrothermally altered calcite and dolomite from George Fisher is generally more LREE depleted than the pre-ore calcite, whole-rock REE concentrations, and shale reference values. We suggest this is the result of hydrothermal alteration by saline Cl--rich mineralizing fluids. Furthermore, the presence of both positive and negative Eu/Eu* values in calcite and dolomite indicates that the mineralizing fluids were relatively hot (>250°C) and cooled below 200–250°C during ore formation. This study confirms the hypothesis that in situ REE+Y data can be used to differentiate between pre-ore and hydrothermal carbonate and provide important constraints on the conditions of ore formation

    A Hyperbaric Aerodynamic Levitator For Containerless Materials Research

    Get PDF
    A hyperbaric aerodynamic levitator has been developed for containerless materials research at specimen temperatures exceeding 2000 °C and pressures up to 10.3 MPa (1500 psi). This report describes the prototype instrument design and observations of the influence of specimen size, density, pressure, and flow rate on levitation behavior. The effect of pressure on heat transfer was also assessed by studying the heating and cooling behavior of levitated Al2O3 liquids. A threefold increase in the convective heat transfer coefficient was estimated as pressure increased to 10.3 MPa. The results demonstrate that hyperbaric aerodynamic levitation is a promising technique for containerless materials research at high gas pressures

    Irruptions: evidence for breeding season habitat limitation in Piping Plover (Charadrius melodus)

    Get PDF
    Effective management of wildlife populations requires identification of the factors limiting their growth. The Piping Plover (Charadrius melodus) is an imperiled, disturbance-dependent, shorebird species that nests on broad, sparsely vegetated beaches, sandbars, and lakeshores. In areas minimally affected by human use, plover habitat loss occurs through vegetation encroachment and erosion. Alternatively, habitat availability may be increased by sand deposition caused by storm- or flood-induced sediment transport or scouring that removes vegetation, or by receding lake levels. To test the hypothesis that plover populations are limited by available breeding habitat, we estimated the amount of habitat available before and after four significant storm and flooding events (i.e., disturbance) by classifying pre- and postdisturbance aerial imagery. We then evaluated the population changes that occurred after disturbance-related habitat alterations. Additionally, we report on population changes from four population increases that occurred after habitat creation events for which we did not have imagery suitable for classification. The storm and flood effects considered were those from hurricanes and nor’easters on barrier islands of Virginia, North Carolina, New York, and Maryland, USA, and those from floods and high water output from the Gavins Point Dam on the Missouri River between South Dakota and Nebraska, USA. The amount of nesting habitat increased 27–950% at these sites, and plover populations increased overall 72–622% after these events (increase of 8–217 pairs in 3 to 8 years after the disturbance, average 12–116% increase annually). The demographic changes were driven by productivity in some cases and probably by increases in immigration in others, and occurred simultaneously with regional increases. Our results support our hypothesis that the focal plover populations were at or near carrying capacity and are habitat limited. Currently, human interventions such as beach stabilization, the construction of artificial dunes, and dams reduce natural disturbance, and therefore, the carrying capacity, in many plover breeding areas. If these interventions were reduced or modified in such a way as to create and improve habitat, plover populations would likely reach higher average numbers and the potential for achieving recovery goals would be increased

    MR-guided beam gating: Residual motion, gating efficiency and dose reconstruction for stereotactic treatments of the liver and lung

    Full text link
    PURPOSE This study aims to investigate the efficiency and the geometric as well as the dosimetric benefit of magnetic-resonance guided beam gating for stereotactic treatments in moving organs. METHOD Patients treated with MR-guided (MRIdian system) SBRT for lung (n = 10) and liver (n = 10) targets were analyzed. Breath-hold gating was performed based on lesion tracking in sagittal cine MRI images. The target offset from the geometric center of the gating window with and without gating was evaluated. A dose reconstruction workflow based on convolution of these 2D position-probability maps and the daily 3D dose distribution was used to estimate the daily delivered dose including motion. The dose to the clinical target volume (CTV) and to a 2-cm ring structure around the planning target volume were evaluated. RESULTS The applied gating protocol resulted in a mean (±standard deviation) gating efficiency of 55%±16%. Over all patients, the mean target offset (2D-root-mean-square error) was 8.3 ± 4.3 mm, which reduced to 2.4 ± 0.6 mm during gating. The dose reconstruction showed a mean deviation in CTV coverage (D95) from the static plans of -1.7%±1.8% with gating and -12.0%±8.4% if no gating would have been used. The mean dose (Dmean) in the ring structure, with respect to the static plans, showed mean deviations of -0.1%±0.3% with gating and -1.6%±1.8% without gating. CONCLUSION The MRIdian system enables gating based on the inner anatomy and the implemented dose reconstruction workflow demonstrated geometric robust delivery of the planned radiation doses

    Viral factors in influenza pandemic risk assessment

    Get PDF
    The threat of an influenza A virus pandemic stems from continual virus spillovers from reservoir species, a tiny fraction of which spark sustained transmission in humans. To date, no pandemic emergence of a new influenza strain has been preceded by detection of a closely related precursor in an animal or human. Nonetheless, influenza surveillance efforts are expanding, prompting a need for tools to assess the pandemic risk posed by a detected virus. The goal would be to use genetic sequence and/or biological assays of viral traits to identify those non-human influenza viruses with the greatest risk of evolving into pandemic threats, and/or to understand drivers of such evolution, to prioritize pandemic prevention or response measures. We describe such efforts, identify progress and ongoing challenges, and discuss three specific traits of influenza viruses (hemagglutinin receptor binding specificity, hemagglutinin pH of activation, and polymerase complex efficiency) that contribute to pandemic risk

    All-cause admissions following a first-ever exacerbation-related hospitalization in COPD

    Get PDF
    Background Hospital admissions are important contributors to the overall burden of chronic obstructive pulmonary disease (COPD). Understanding the patterns and causes of hospital admissions will help to identify targets for preventive interventions. This study aimed to determine the 5-year all-cause hospital admission trajectories of patients with COPD following their first ever exacerbation-related hospitalisation. Methods Patients with COPD were identified from the Danish national registries. Patients experiencing their first ever exacerbation-related hospitalisation, defined as the index event, between 2000 and 2014 were included. All-cause hospital admissions were examined during a subsequent 5-year follow-up period, and categorised using the International Classification of Diseases, 10th revision. Results In total, 82 964 patients with COPD were included. The mean±sd age was 72±10 years and 48% were male. Comorbidities were present in 58%, and 65% of the patients collected inhalation medication ≤6 months prior to the index event. In total, 337 066 all-cause hospital admissions were identified, resulting in a 5-year admission rate of 82%. Most admissions were due to nonrespiratory causes (59%), amongst which cardiac events were most common (19%). Conclusion Hospital admissions following a first exacerbation-related hospitalisation are common; nonrespiratory events constitute the majority of admissions. Besides the respiratory causes, treatment targeting the nonrespiratory causes of hospital admission should be considered to effectively decrease the burden of hospitalisation in COPD

    Assessing health-related quality of life in COPD: comparing generic and disease-specific instruments with focus on comorbidities

    Get PDF
    Background: Chronic Obstructive Pulmonary Disease (COPD) influences different aspects of patient's health-related quality of life (HRQL). While disease-specific HRQL instruments focus on symptoms and functional impairments, generic instruments cover a broader view on health. This study compares the generic EQ-5D-3 L and two disease-specific questionnaires (St.-George's Respiratory Questionnaire (SGRQ-C), COPD Assessment Test (CAT)) in a comprehensive spectrum of COPD disease grades with particular attention on comorbidities and assesses the discriminative abilities of these instruments. Methods: Using data from the baseline visit of the German COPD cohort COSYCONET, mean HRQL scores in different COPD grades were compared by linear regression models adjusting for age, sex, education, smoking status, BMI, and low vs. high number of comorbidities or a list of several self-reported comorbid conditions. Discriminative abilities of HRQL instruments to differentiate between COPD grades were assessed by standardized mean differences. Results: In 2,291 subjects in COPD GOLD grades 1-4 EQ-5D-3 L utility, EQ-5D VAS, SGRQ, and CAT were found able to discriminate between COPD grades, with some limitations for the EQ-5D utility in mild disease. Both generic and disease-specific HRQL instruments reflected the burden of comorbid conditions. The SGRQ showed the best discrimination between COPD grades and was less influenced by comorbidities, while EQ-5D utility put a higher weight on comorbid conditions. For all instruments, psychiatric disorders and peripheral artery disease showed the strongest negative associations with HRQL. Conclusion: All HRQL instruments considered reflect considerable impairment of HRQL in COPD patients, worsening with increasing COPD grade and number of comorbidities. Findings may support clinical assessment, choice of HRQL instrument in future studies, and parameterization of decision-analytic models

    5'-Serial Analysis of Gene Expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea

    Get PDF
    Abstract: Background: The transition from the vegetative mycelium to the primordium during fruiting body development is the most complex and critical developmental event in the life cycle of many basidiomycete fungi. Understanding the molecular mechanisms underlying this process has long been a goal of research on basidiomycetes. Large scale assessment of the expressed transcriptomes of these developmental stages will facilitate the generation of a more comprehensive picture of the mushroom fruiting process. In this study, we coupled 5'-Serial Analysis of Gene Expression (5'-SAGE) to high-throughput pyrosequencing from 454 Life Sciences to analyze the transcriptomes and identify up-regulated genes among vegetative mycelium (Myc) and stage 1 primordium (S1-Pri) of Coprinopsis cinerea during fruiting body development. Results: We evaluated the expression of >3,000 genes in the two respective growth stages and discovered that almost one-third of these genes were preferentially expressed in either stage. This identified a significant turnover of the transcriptome during the course of fruiting body development. Additionally, we annotated more than 79,000 transcription start sites (TSSs) based on the transcriptomes of the mycelium and stage 1 primoridum stages. Patterns of enrichment based on gene annotations from the GO and KEGG databases indicated that various structural and functional protein families were uniquely employed in either stage and that during primordial growth, cellular metabolism is highly up-regulated. Various signaling pathways such as the cAMP-PKA, MAPK and TOR pathways were also identified as up-regulated, consistent with the model that sensing of nutrient levels and the environment are important in this developmental transition. More than 100 up-regulated genes were also found to be unique to mushroom forming basidiomycetes, highlighting the novelty of fruiting body development in the fungal kingdom. Conclusions: We implicated a wealth of new candidate genes important to early stages of mushroom fruiting development, though their precise molecular functions and biological roles are not yet fully known. This study serves to advance our understanding of the molecular mechanisms of fruiting body development in the model mushroom C. cinerea

    COPD stands for complex obstructive pulmonary disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) has extensively been reported as a complex disease affecting patients' health beyond the lungs with a variety of intra- and extrapulmonary components and considerable variability between individuals. This review discusses the assessment of this complexity and underlines the importance of transdisciplinary management programmes addressing the physical, emotional and social health of the individual patient.COPD management is challenging and requires advanced, sophisticated strategies meeting the patient's individual needs. Due to the heterogeneity and complexity of the disease leading to non-linear and consequently poorly predictable treatment responses, multidimensional patient profiling is crucial to identify the right COPD patient for the right treatment. Current methods are often restricted to general, well-known and commonly used assessments neglecting potentially relevant (interactions between) individual, unique "traits" to finally ensure personalised treatment. Dynamic, personalised and holistic approaches are needed to tackle this multifaceted disease and to ensure personalised medicine and value-based healthcare
    • …
    corecore