24 research outputs found
Protein Expression of the Microglial Marker Tmem119 Decreases in Association With Morphological Changes and Location in a Mouse Model of Traumatic Brain Injury
The activation of microglia and the infiltration of macrophages are hallmarks of neuroinflammation after acute brain injuries, including traumatic brain injury (TBI). The two myeloid populations share many features in the post-injury inflammatory response, thus, being antigenically indistinguishable. Recently Tmem119, a type I transmembrane protein specifically expressed by microglia under physiological conditions, was proposed as a tool to differentiate resident microglia from blood-borne macrophages, not expressing it. However, the validity of Tmem119 as a specific marker of resident microglia in the context of acute brain injury, where microglia are activated and macrophages are recruited, needs validation. Our purpose was to investigate Tmem119 expression and distribution in relation to the morphology of brain myeloid cells present in the injured area after TBI. Mice underwent sham surgery or TBI by controlled cortical impact (CCI). Brains from sham-operated, or TBI mice, were analyzed by in situ hybridization to identify the cells expressing Tmem119, and by Western blot and quantitative immunofluorescence to measure Tmem119 protein levels in the entire brain regions and single cells. The morphology of Iba1+ myeloid cells was analyzed at different times (4 and 7 days after TBI) and several distances from the contused edge in order to associate Tmem119 expression with morphological evolution of active microglia. In situ hybridization indicated an increased Tmem119 RNA along with increased microglial complement C1q activation in the contused area and surrounding regions. On the contrary, the biochemical evaluation showed a drop in Tmem119 protein levels in the same areas. The Tmem119 immunoreactivity decreased in Iba1+ myeloid cells found in the contused cortex at both time points, with the cells showing the hypertrophic ameboid morphology having no Tmem119 expression. The Tmem119 was present on ramifications of resident microglia and its presence was decreased as a consequence of microglial activation in cortical areas close to contusion. Based on the data, we conclude that the decrease of Tmem119 in reactive microglia may depend on the process of microglial activation, which involves the retracting of their branchings to acquire an ameboid shape. The Tmem119 immunoreactivity decreases in reactive microglia to similar levels than the blood-borne macrophages, thus, failing to discriminate the two myeloid populations after TBI.This work was supported by the ERA-NET NEURON, JTC 2016: LEAP, NEURON9-FP-044 from the following national funding institutions: Italian Ministry of Health (Ministero della Salute), Italy; Ministerio de EconomĂa, Industria y Competitividad (PCIN-2017-035) Spain; 01EW1703, Bundesministerium fĂĽr Bildung und Forschung (BMBF), Germany.Peer reviewe
How to Engage in Pseudoscience With Real Data: A Criticism of John Hattie’s Arguments in Visible Learning From the Perspective of a Statistician
This paper is a forum contribution that appeared in issue 51-2 in French. Due to the “positive buzz” it garnered following its publication, the MJE editorial team has made its translation available to our English readers. The original version can be accessed here: http://mje.mcgill.ca/article/view/9394.Cet article est paru en français dans l’édition 51-2. En raison de la réception très favorable des lecteurs lors de sa publication, l’équipe éditoriale de la RSÉM permet aux lecteurs anglophones d’en lire une version en anglais. L’article original est disponible à l’adresse suivante : http://mje.mcgill.ca/article/view/9394
Transactivation of Cellular Genes Involved in Nucleotide Metabolism by the Regulatory IE1 Protein of Murine Cytomegalovirus Is Not Critical for Viral Replicative Fitness in Quiescent Cells and Host Tissuesâ–ż
Despite its high coding capacity, murine CMV (mCMV) does not encode functional enzymes for nucleotide biosynthesis. It thus depends on cellular enzymes, such as ribonucleotide reductase (RNR) and thymidylate synthase (TS), to be supplied with deoxynucleoside triphosphates (dNTPs) for its DNA replication. Viral transactivation of these cellular genes in quiescent cells of host tissues is therefore a parameter of viral fitness relevant to pathogenicity. Previous work has shown that the IE1, but not the IE3, protein of mCMV transactivates RNR and TS gene promoters and has revealed an in vivo attenuation of the mutant virus mCMV-ΔIE1. It was attractive to propose the hypothesis that lack of transactivation by IE1 and a resulting deficiency in the supply of dNTPs are the reasons for growth attenuation. Here, we have tested this hypothesis with the mutant virus mCMV-IE1-Y165C expressing an IE1 protein that selectively fails to transactivate RNR and TS in quiescent cells upon transfection while maintaining the capacity to disperse repressive nuclear domains (ND10). Our results confirm in vivo attenuation of mCMV-ΔIE1, as indicated by a longer doubling time in host organs, whereas mCMV-IE1-Y165C replicated like mCMV-WT and the revertant virus mCMV-IE1-C165Y. Notably, the mutant virus transactivated RNR and TS upon infection of quiescent cells, thus indicating that IE1 is not the only viral transactivator involved. We conclude that transactivation of cellular genes of dNTP biosynthesis is ensured by redundancy and that attenuation of mCMV-ΔIE1 results from the loss of other critical functions of IE1, with its function in the dispersal of ND10 being a promising candidate
Zinc oxide nanoparticles induce necrosis and apoptosis in macrophages in a p47phox- and Nrf2-independent manner.
In view of the steadily increasing use of zinc oxide nanoparticles in various industrial and consumer applications, toxicological investigations to evaluate their safety are highly justified. We have investigated mechanisms of ZnO nanoparticle-induced apoptosis and necrosis in macrophages in relation to their important role in the clearance of inhaled particulates and the regulation of immune responses during inflammation. In the murine macrophage RAW 264.7 cell line, ZnO treatment caused a rapid induction of nuclear condensation, DNA fragmentation, and the formation of hypodiploid DNA nuclei and apoptotic bodies. The involvement of the essential effector caspase-3 in ZnO-mediated apoptosis could be demonstrated by immunocytochemical detection of activated caspase-3 in RAW 264.7 cells. ZnO specifically triggered the intrinsic apoptotic pathway, because Jurkat T lymphocytes deficient in the key mediator caspase-9 were protected against ZnO-mediated toxicity whereas reconstituted cells were not. ZnO also caused DNA strand breakage and oxidative DNA damage in the RAW 264.7 cells as well as p47(phox) NADPH oxidase-dependent superoxide generation in bone marrow-derived macrophages. However, ZnO-induced cell death was not affected in bone marrow-derived macrophages of mice deficient in p47(phox) or the oxidant responsive transcription factor Nrf2. Taken together, our data demonstrate that ZnO nanoparticles trigger p47(phox) NADPH oxidase-mediated ROS formation in macrophages, but that this is dispensable for caspase-9/3-mediated apoptosis. Execution of apoptotic cell death by ZnO nanoparticles appears to be NADPH oxidase and Nrf2-independent but rather triggered by alternative routes
Bone marrow subtractively stained for CD34 (blue) and CD 141 (brown).
<p>CD34 is visualised in small microvesssels (capillaries) and is less intensely expressed in large microvessels (sinuses) which exhibit patchy blue and brown staining. Scale bar = 50 ÎĽm.</p
Iliac crest bone marrow stained with hemalum-eosin.
<p>Undecalcified section embedded in Technovit<sup>®</sup> 9100. The quality of the section is equivalent to a decalcified paraffin section. Note the variable density of haematopoiesis within directly adjacent adipose tissue areas. Scale bar = 100 μm.</p
Pipeline of image processing and QC methods, both semi-automatic and manual.
<p>* The quality of registration is commented on in Lobachev et al. [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0168173#pone.0168173.ref025" target="_blank">25</a>]. ** 3D rendering does not affect the data.</p