4,306 research outputs found

    On neutron number dependence of B(E1;0+ --> 1-) reduced transition probability

    Full text link
    A neutron number dependence of the E1 0+ --> 1- reduced transition probability in spherical even--even nuclei is analysed within the Q--phonon approach in the fermionic space to describe the structure of collective states. Microscopic calculations of the E1 0+ --> 1- transition matrix elements are carried out for the Xe isotopes based on the RPA for the ground state wave function. A satisfactory description of the experimental data is obtained.Comment: 8 pages, 4 figure

    Unitarity constraint for threshold coherent pion photoproduction on the deuteron and chiral perturbation theory

    Get PDF
    The contribution of the two-step process gamma + d -> p + n -> pi0 + d to the imaginary part of the amplitude for coherent pion production on the deuteron is calculated exploiting unitarity constraints. The result shows that this absorptive process is not negligible and has to be considered in an extraction of the elementary neutron production amplitude from the gamma + d -> pi0 + d cross section at threshold. In addition, it is argued that a consistent calculation of gamma + d -> pi0 + d in baryon chiral perturbation theory beyond next-to-leading order requires the inclusion of this absorptive process.Comment: 11 pages revtex including 2 postscript figure

    Phase-space theory for dispersive detectors of superconducting qubits

    Full text link
    Motivated by recent experiments, we study the dynamics of a qubit quadratically coupled to its detector, a damped harmonic oscillator. We use a complex-environment approach, explicitly describing the dynamics of the qubit and the oscillator by means of their full Floquet state master equations in phase-space. We investigate the backaction of the environment on the measured qubit and explore several measurement protocols, which include a long-term full read-out cycle as well as schemes based on short time transfer of information between qubit and oscillator. We also show that the pointer becomes measurable before all information in the qubit has been lost.Comment: 15 pages, 8 figure

    Elasticity of Stiff Polymer Networks

    Full text link
    We study the elasticity of a two-dimensional random network of rigid rods (``Mikado model''). The essential features incorporated into the model are the anisotropic elasticity of the rods and the random geometry of the network. We show that there are three distinct scaling regimes, characterized by two distinct length scales on the elastic backbone. In addition to a critical rigidiy percolation region and a homogeneously elastic regime we find a novel intermediate scaling regime, where elasticity is dominated by bending deformations.Comment: 4 pages, 4 figure

    Optical evidence for heavy charge carriers in FeGe

    Full text link
    The optical spectrum of the cubic helimagnetic metal FeGe has been investigated in the frequency range from 0.01 - 3.1 eV for different temperatures from 30 K to 296 K. The optical conductivity shows the evolution of a low energy (0.22 eV) interband transition and the development of a narrow free carrier response with a strong energy and temperature dependence. The frequency dependent effective mass and scattering rate derived from the optical data indicate the formation of dressed quasi-particles with a mass renormalization factor of 12. Similar to FeSi the spectral weight in FeGe is not recovered over a broad frequency range, an effect usually attributed to the influence of the on-site Coulomb interaction.Comment: 5 pages, 5 figure

    Electronic structure of superposition states in flux qubits

    Full text link
    Flux qubits, small superconducting loops interrupted by Josephson junctions, are successful realizations of quantum coherence for macroscopic variables. Superconductivity in these loops is carried by 106\sim 10^6 -- 101010^{10} electrons, which has been interpreted as suggesting that coherent superpositions of such current states are macroscopic superpositions analogous to Schr\"odinger's cat. We provide a full microscopic analysis of such qubits, from which the macroscopic quantum description can be derived. This reveals that the number of microscopic constituents participating in superposition states for experimentally accessible flux qubits is surprisingly but not trivially small. The combination of this relatively small size with large differences between macroscopic observables in the two branches is seen to result from the Fermi statistics of the electrons and the large disparity between the values of superfluid and Fermi velocity in these systems.Comment: Minor cosmetic changes. Published version

    VPLanet: The Virtual Planet Simulator

    Full text link
    We describe a software package called VPLanet that simulates fundamental aspects of planetary system evolution over Gyr timescales, with a focus on investigating habitable worlds. In this initial release, eleven physics modules are included that model internal, atmospheric, rotational, orbital, stellar, and galactic processes. Many of these modules can be coupled simultaneously to simulate the evolution of terrestrial planets, gaseous planets, and stars. The code is validated by reproducing a selection of observations and past results. VPLanet is written in C and designed so that the user can choose the physics modules to apply to an individual object at runtime without recompiling, i.e., a single executable can simulate the diverse phenomena that are relevant to a wide range of planetary and stellar systems. This feature is enabled by matrices and vectors of function pointers that are dynamically allocated and populated based on user input. The speed and modularity of VPLanet enables large parameter sweeps and the versatility to add/remove physical phenomena to assess their importance. VPLanet is publicly available from a repository that contains extensive documentation, numerous examples, Python scripts for plotting and data management, and infrastructure for community input and future development.Comment: 75 pages, 34 figures, 10 tables, accepted to the Proceedings of the Astronomical Society of the Pacific. Source code, documentation, and examples available at https://github.com/VirtualPlanetaryLaboratory/vplane

    Bose-Einstein Condensation of Magnons in Cs2CuCl4

    Full text link
    We report on results of specific heat measurements on single crystals of the frustrated quasi-2D spin-1/2 antiferromagnet Cs_2CuCl_4 (T_N=0.595 K) in external magnetic fields B30 mK. Decreasing B from high fields leads to the closure of the field-induced gap in the magnon spectrum at a critical field B_c = 8.51 T and a magnetic phase transition is clearly seen below B_c. In the vicinity to B_c, the phase transition boundary is well described by the power-law T_c(B)\propto (B_c-B)^{1/\phi} with the measured critical exponent \phi\simeq 1.5. These findings are interpreted as a Bose-Einstein condensation of magnons.Comment: 5 pages, 4 figures, experiment and theor

    Coherent Electron Transport in Superconducting-Normal Metallic Films

    Full text link
    We study the transport properties of a quasi-two-dimensional diffusive normal metal film attached to a superconductor. We demonstrate that the properties of such films can essentially differ from those of quasi-one-dimensional systems: in the presence of the proximity induced superconductivity in a sufficiently wide film its conductance may not only increase but also decrease with temperature. We develop a quantitative theory and discuss the physical nature of this effect. Our theory provides a natural explanation for recent experimental findings referred to as the ``anomalous proximity effect''.Comment: 4 Pages RevTex, 4 Postscript figures; submitted to Phys. Rev. Let
    corecore