7,882 research outputs found
Space station integrated wall design and penetration damage control. Task 3: Theoretical analysis of penetration mechanics
The efforts to provide a penetration code called PEN4 version 10 is documented for calculation of projectile and target states for the impact of 2024-T3 aluminum, R sub B 90 1018 steel projectiles and icy meteoroids onto 2024-T3 aluminum plates at impact velocities from 0 to 16 km/s. PEN4 determines whether a plate is perforated by calculating the state of fragmentation of projectile and first plate. Depth of penetration into the second to n sup th plate by fragments resulting from first plate perforation is determined by multiple cratering. The results from applications are given
Complex Chiral Modulations in FeGe close to Magnetic Ordering
We report on detailed polarized small-angle neutron scattering on cubic FeGe
in magnetic fields applied either along (transverse) the scattering vector or
parallel (longitudinal)to the neutron beam. The () phase diagrams for all
principal axes contain a segmented -phase region just below the onset of
magnetic order. Hexagonal Bragg-spot patterns were observed across the entire
-phase region for the longitudinal geometry. Scattering intensity was
observed in parts of the A phase for both scattering configurations. Only in a
distinct pocket () vanishing scattering intensity was found in the
transverse geometry.Comment: This paper has been withdrawn by the author due to misunderstanding
with some of the co-author
Phase-space theory for dispersive detectors of superconducting qubits
Motivated by recent experiments, we study the dynamics of a qubit
quadratically coupled to its detector, a damped harmonic oscillator. We use a
complex-environment approach, explicitly describing the dynamics of the qubit
and the oscillator by means of their full Floquet state master equations in
phase-space. We investigate the backaction of the environment on the measured
qubit and explore several measurement protocols, which include a long-term full
read-out cycle as well as schemes based on short time transfer of information
between qubit and oscillator. We also show that the pointer becomes measurable
before all information in the qubit has been lost.Comment: 15 pages, 8 figure
Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink layers
We investigated the spin pumping damping contributed by paramagnetic layers
(Pd, Pt) in both direct and indirect contact with ferromagnetic
NiFe films. We find a nearly linear dependence of the
interface-related Gilbert damping enhancement on the heavy-metal
spin-sink layer thicknesses t in direct-contact
NiFe/(Pd, Pt) junctions, whereas an exponential dependence is
observed when NiFe and (Pd, Pt) are separated by \unit[3]{nm} Cu.
We attribute the quasi-linear thickness dependence to the presence of induced
moments in Pt, Pd near the interface with NiFe, quantified using
X-ray magnetic circular dichroism (XMCD) measurements. Our results show that
the scattering of pure spin current is configuration-dependent in these systems
and cannot be described by a single characteristic length
Scaling Study and Thermodynamic Properties of the cubic Helimagnet FeGe
The critical behavior of the cubic helimagnet FeGe was obtained from
isothermal magnetization data in very close vicinity of the ordering
temperature. A thorough and consistent scaling analysis of these data revealed
the critical exponents , , and . The
anomaly in the specific heat associated with the magnetic ordering can be well
described by the critical exponent . The values of these
exponents corroborate that the magnetic phase transition in FeGe belongs to the
isotropic 3D-Heisenberg universality class. The specific heat data are well
described by ab initio phonon calculations and confirm the localized character
of the magnetic moments.Comment: 10 pages, 8 figure
Decoherence of Flux Qubits Coupled to Electronic Circuits
On the way to solid-state quantum computing, overcoming decoherence is the
central issue. In this contribution, we discuss the modeling of decoherence of
a superonducting flux qubit coupled to dissipative electronic circuitry. We
discuss its impact on single qubit decoherence rates and on the performance of
two-qubit gates. These results can be used for designing decoherence-optimal
setups.Comment: 16 pages, 5 figures, to appear in Advances in Solid State Physics,
Vol. 43 (2003
Crossover from weak to strong coupling regime in dispersive circuit QED
We study the decoherence of a superconducting qubit due to the dispersive
coupling to a damped harmonic oscillator. We go beyond the weak
qubit-oscillator coupling, which we associate with a phase Purcell effect, and
enter into a strong coupling regime, with qualitatively different behavior of
the dephasing rate. We identify and give a physicaly intuitive discussion of
both decoherence mechanisms. Our results can be applied, with small
adaptations, to a large variety of other physical systems, e. g. trapped ions
and cavity QED, boosting theoretical and experimental decoherence studies.Comment: Published versio
- …