106 research outputs found

    50 Hz X‐Ray Diffraction Stress Analysis and Numerical Process Simulation at Laser Surface Line Hardening of Web Structures

    Get PDF
    In situ synchrotron X-ray diffraction experiments were carried out during laser surface line hardening of the common tempering steel AISI 4140 at beamline P05@PETRA III operated by Helmholtz-Zentrum Geesthacht at the Deutsches Elektronen Synchrotron, Hamburg, Germany. A unique process chamber was used to investigate the phase and transverse surface stress evolution during a laser line hardening processes. Synchrotron radiation, in combination with microstrip line detectors, allows for a time resolution of 50 Hz. Specimen geometries were hardened using a high-power diode laser under control of the surface temperature and constant laser beam feed. Herein, it is focused on web-structured specimens in contrast to a flat geometry. The experimental results are discussed with regard to the workpiece geometry effect of the web structure dimensions on the temporal and spatial stress evolution. In addition, numerical process simulations based on the finite element method were carried out to support the drawn conclusions. The presented model is able to predict the surface transverse stresses inside the process zone center, while providing further 3D information. A heat build-up in the web leads to a wider and deeper process zone, however, the absolute hardness increase and the transverse residual stresses at the surface center are not affected

    Efficient Quality Diversity Optimization of 3D Buildings through 2D Pre-optimization

    Full text link
    Quality diversity algorithms can be used to efficiently create a diverse set of solutions to inform engineers' intuition. But quality diversity is not efficient in very expensive problems, needing 100.000s of evaluations. Even with the assistance of surrogate models, quality diversity needs 100s or even 1000s of evaluations, which can make it use infeasible. In this study we try to tackle this problem by using a pre-optimization strategy on a lower-dimensional optimization problem and then map the solutions to a higher-dimensional case. For a use case to design buildings that minimize wind nuisance, we show that we can predict flow features around 3D buildings from 2D flow features around building footprints. For a diverse set of building designs, by sampling the space of 2D footprints with a quality diversity algorithm, a predictive model can be trained that is more accurate than when trained on a set of footprints that were selected with a space-filling algorithm like the Sobol sequence. Simulating only 16 buildings in 3D, a set of 1024 building designs with low predicted wind nuisance is created. We show that we can produce better machine learning models by producing training data with quality diversity instead of using common sampling techniques. The method can bootstrap generative design in a computationally expensive 3D domain and allow engineers to sweep the design space, understanding wind nuisance in early design phases.Comment: This is the final version and has been accepted for publication in Evolutionary Computation (MIT Press

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Применение программного продукта «Яндекс.Сервер» для организации поиска в электронном каталоге библиотеки

    Get PDF
    The huge amounts of information accumulated by libraries in recent years put before developers a problem of the organization of fast and qualitative search which decision is possible with the use of modern search tools of Web-technology. The author examines one of these tools the software product “Yandex. Server”, allowing to organize optimum search in the electronic library catalog. The software product “Yandex. Server” gives a chance to carry out optimum search taking into account morphology of Russian and English languages, as well as the various logical conditions that provides effective and flexible search in the electronic library catalog.Накопленные библиотеками за последние годы огромные массивы информации ставят перед разработчиками задачу организации быстрого и качественного поиска, решение которой возможно с использованием современных поисковых инструментов веб-технологии. Автор рассматривает один из таких инструментов - программный продукт «Яндекс. Сервер», позволяющий организовать оптимальный поиск в электронном каталоге библиотеки с учетом морфологии русского и английского языков, а также различных логических условий

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    High-order lattice Boltzmann method for the simulation of compressible flows

    No full text
    In dieser Arbeit wird eine kompressible Semi-Lagrangesche Lattice-Boltzmann-Methode neu entwickelt und erprobt. Die Lattice-Boltzmann-Methode ist ein Verfahren zur numerischen Strömungssimulation, das auf einer Modellierung von Partikeldichten und deren Interaktion untereinander basiert. In ihrer Ursprungsform ist die Methode jedoch auf schwach kompressible Strömungen mit niedriger Machzahl beschränkt. Wesentliche Nachteile der bisherigen Versuche zur Erweiterung auf supersonische Strömungen sind entweder mangelhafte Stabilität der Verfahren, unpraktikabel große Geschwindigkeitssätze oder die Beschränktheit auf kleine Zeitschrittweiten. Als Alternative zu bisherigen Ansätzen wird in dieser Arbeit ein Semi-Lagrangescher Strömungsschritt eingesetzt. Semi-Lagrangesche Verfahren entkoppeln mittels Interpolation die Orts-, Zeit- und Geschwindigkeitsdiskretisierung der ursprünglichen Lattice-Boltzmann-Methode. Nach der Einleitung wird im zweiten und dritten Kapitel dieser Arbeit zunächst auf die Grundlagen und Prinzipien der Lattice-Boltzmann-Methode eingegangen sowie bisherige Ansätze zur Simulation kompressibler Strömungen aufgeführt. Im Anschluss wird die kompressible Semi-Lagrangesche Lattice-Boltzmann-Methode entwickelt und beschrieben. Die Erweiterung erfolgt im Wesentlichen durch die Verknüpfung der Methode mit geeigneten Gleichgewichtsfunktionen und Geschwindigkeitssätzen. Im vierten Kapitel der Arbeit werden neue Kubatur-basierte Geschwindigkeitssätze entwickelt und getestet, darunter ein D3Q45-Geschwindigkeitssatz zur Berechnung kompressibler Strömungen, der den Rechenaufwand gegenüber konventionellen Geschwindigkeitsdiskretisierungen erheblich verringert. Im fünften Kapitel der Arbeit werden zur Validierung Simulationen von eindimensionalen Stoßrohren, zweidimensionalen Riemann-Problemen und Stoß-Wirbel-Interaktionen durchgeführt. Im Anschluss zeigen Simulationen von dreidimensionalen, kompressiblen Taylor-Green-Wirbeln sowie von wandgebundenen Testfällen die Vorteile der Methode für kompressible Strömungssimulationen. Zu diesem Zweck werden die Überschallströmung um ein zweidimensionales NACA-0012-Profil und um eine dreidimensionale Kugel sowie eine supersonische Kanalströmung untersucht. Dem Simulationsteil folgt eine umfangreiche Diskussion der Semi-Lagrangeschen Lattice-Boltzmann-Methode im Vergleich zu anderen Methoden. Die Vorteile der Methode, wie vergleichsweise große Zeitschrittweiten, körperangepasste Netze und die Stabilität der Methode, werden hier herausgearbeitet.In this thesis, a compressible semi-Lagrangian lattice Boltzmann method is newly developed and tested. The lattice Boltzmann method is a rapidly advancing numerical method for computational fluid dynamics. However, in its original form, the lattice Boltzmann method is limited to weakly compressible flows with low Mach number. Previous attempts to extend the lattice Boltzmann method to supersonic flows suffered either from poor stability, from impractically large velocity sets, or from small time step sizes. As an alternative to previous approaches, a semi-Lagrangian streaming step is used in this work. Semi-Lagrangian methods decouple the spatial, time, and velocity space discretization of the original lattice Boltzmann method by interpolation during the streaming step. Following the introduction, the second and third chapters of this thesis first detail the basics of the lattice Boltzmann method and list previous approaches to simulate compressible flows. Subsequently, the compressible semi-Lagrangian lattice Boltzmann method is developed and described. In the fourth chapter of the thesis, new cubature-based velocity sets are developed and tested, including a D3Q45 velocity set for the computation of compressible flows, which significantly reduces the computational cost compared to conventional velocity discretizations. In the fifth chapter of the thesis, simulations of one-dimensional shock tubes, two-dimensional Riemann problems, and shock-vortex interactions are performed for validation. Thereafter, simulations of compressible Taylor-Green vortices as well as wall-bounded problems demonstrate the advantages of the method for compressible flow simulations. The latter include the supersonic flow around a two-dimensional NACA-0012 profile and around a three-dimensional sphere as well as a supersonic channel flow. The simulation section is followed by an extensive discussion of the semi-Lagrangian lattice Boltzmann method in comparison to other methods. The advantages of the method include comparatively large time step sizes, compatibility with body-fitted meshes, and the intrinsic stability of the method even without artificial viscosity

    Lattice-Boltzmann-Verfahren hoher Ordnung zur Simulation kompressibler Strömungen

    No full text
    In dieser Arbeit wird eine kompressible Semi-Lagrangesche Lattice-Boltzmann-Methode neu entwickelt und erprobt. Die Lattice-Boltzmann-Methode ist ein Verfahren zur numerischen Strömungssimulation, das auf einer Modellierung von Partikeldichten und deren Interaktion untereinander basiert. In ihrer Ursprungsform ist die Methode jedoch auf schwach kompressible Strömungen mit niedriger Machzahl beschränkt. Wesentliche Nachteile der bisherigen Versuche zur Erweiterung auf supersonische Strömungen sind entweder mangelhafte Stabilität der Verfahren, unpraktikabel große Geschwindigkeitssätze oder die Beschränktheit auf kleine Zeitschrittweiten. Als Alternative zu bisherigen Ansätzen wird in dieser Arbeit ein Semi-Lagrangescher Strömungsschritt eingesetzt. Semi-Lagrangesche Verfahren entkoppeln mittels Interpolation die Orts-, Zeit- und Geschwindigkeitsdiskretisierung der ursprünglichen Lattice-Boltzmann-Methode. Nach der Einleitung wird im zweiten und dritten Kapitel dieser Arbeit zunächst auf die Grundlagen und Prinzipien der Lattice-Boltzmann-Methode eingegangen sowie bisherige Ansätze zur Simulation kompressibler Strömungen aufgeführt. Im Anschluss wird die kompressible Semi-Lagrangesche Lattice-Boltzmann-Methode entwickelt und beschrieben. Die Erweiterung erfolgt im Wesentlichen durch die Verknüpfung der Methode mit geeigneten Gleichgewichtsfunktionen und Geschwindigkeitssätzen. Im vierten Kapitel der Arbeit werden neue Kubatur-basierte Geschwindigkeitssätze entwickelt und getestet, darunter ein D3Q45-Geschwindigkeitssatz zur Berechnung kompressibler Strömungen, der den Rechenaufwand gegenüber konventionellen Geschwindigkeitsdiskretisierungen erheblich verringert. Im fünften Kapitel der Arbeit werden zur Validierung Simulationen von eindimensionalen Stoßrohren, zweidimensionalen Riemann-Problemen und Stoß-Wirbel-Interaktionen durchgeführt. Im Anschluss zeigen Simulationen von dreidimensionalen, kompressiblen Taylor-Green-Wirbeln sowie von wandgebundenen Testfällen die Vorteile der Methode für kompressible Strömungssimulationen. Zu diesem Zweck werden die Überschallströmung um ein zweidimensionales NACA-0012-Profil und um eine dreidimensionale Kugel sowie eine supersonische Kanalströmung untersucht. Dem Simulationsteil folgt eine umfangreiche Diskussion der Semi-Lagrangeschen Lattice-Boltzmann-Methode im Vergleich zu anderen Methoden. Die Vorteile der Methode, wie vergleichsweise große Zeitschrittweiten, körperangepasste Netze und die Stabilität der Methode, werden hier herausgearbeitet.In this thesis, a compressible semi-Lagrangian lattice Boltzmann method is newly developed and tested. The lattice Boltzmann method is a rapidly advancing numerical method for computational fluid dynamics. However, in its original form, the lattice Boltzmann method is limited to weakly compressible flows with low Mach number. Previous attempts to extend the lattice Boltzmann method to supersonic flows suffered either from poor stability, from impractically large velocity sets, or from small time step sizes. As an alternative to previous approaches, a semi-Lagrangian streaming step is used in this work. Semi-Lagrangian methods decouple the spatial, time, and velocity space discretization of the original lattice Boltzmann method by interpolation during the streaming step. Following the introduction, the second and third chapters of this thesis first detail the basics of the lattice Boltzmann method and list previous approaches to simulate compressible flows. Subsequently, the compressible semi-Lagrangian lattice Boltzmann method is developed and described. In the fourth chapter of the thesis, new cubature-based velocity sets are developed and tested, including a D3Q45 velocity set for the computation of compressible flows, which significantly reduces the computational cost compared to conventional velocity discretizations. In the fifth chapter of the thesis, simulations of one-dimensional shock tubes, two-dimensional Riemann problems, and shock-vortex interactions are performed for validation. Thereafter, simulations of compressible Taylor-Green vortices as well as wall-bounded problems demonstrate the advantages of the method for compressible flow simulations. The latter include the supersonic flow around a two-dimensional NACA-0012 profile and around a three-dimensional sphere as well as a supersonic channel flow. The simulation section is followed by an extensive discussion of the semi-Lagrangian lattice Boltzmann method in comparison to other methods. The advantages of the method include comparatively large time step sizes, compatibility with body-fitted meshes, and the intrinsic stability of the method even without artificial viscosity

    High-order semi-Lagrangian kinetic scheme for compressible turbulence

    Get PDF
    Turbulent compressible flows are traditionally simulated using explicit Eulerian time integration applied to the Navier-Stokes equations. However, the associated Courant-Friedrichs-Lewy condition severely restricts the maximum time step size. Exploiting the Lagrangian nature of the Boltzmann equation's material derivative, we now introduce a feasible three-dimensional semi-Lagrangian lattice Boltzmann method (SLLBM), which elegantly circumvents this restriction. Previous lattice Boltzmann methods for compressible flows were mostly restricted to two dimensions due to the enormous number of discrete velocities needed in three dimensions. In contrast, this Rapid Communication demonstrates how cubature rules enhance the SLLBM to yield a three-dimensional velocity set with only 45 discrete velocities. Based on simulations of a compressible Taylor-Green vortex we show that the new method accurately captures shocks or shocklets as well as turbulence in 3D without utilizing additional filtering or stabilizing techniques, even when the time step sizes are up to two orders of magnitude larger compared to simulations in the literature. Our new method therefore enables researchers for the first time to study compressible turbulent flows by a fully explicit scheme, whose range of admissible time step sizes is only dictated by physics, while being decoupled from the spatial discretization
    corecore