850 research outputs found

    Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities

    Get PDF
    Huntington disease (HD) is a neurodegenerative disease caused by CAG repeat expansion in the huntingtin gene (HTT) and involves a complex web of pathogenic mechanisms. Mutant HTT (mHTT) disrupts transcription, interferes with immune and mitochondrial function, and is aberrantly modified post-translationally. Evidence suggests that the mHTT RNA is toxic, and at the DNA level, somatic CAG repeat expansion in vulnerable cells influences the disease course. Genome-wide association studies have identified DNA repair pathways as modifiers of somatic instability and disease course in HD and other repeat expansion diseases. In animal models of HD, nucleocytoplasmic transport is disrupted and its restoration is neuroprotective. Novel cerebrospinal fluid (CSF) and plasma biomarkers are among the earliest detectable changes in individuals with premanifest HD and have the sensitivity to detect therapeutic benefit. Therapeutically, the first human trial of an HTT-lowering antisense oligonucleotide successfully, and safely, reduced the CSF concentration of mHTT in individuals with HD. A larger trial, powered to detect clinical efficacy, is underway, along with trials of other HTT-lowering approaches. In this Review, we discuss new insights into the molecular pathogenesis of HD and future therapeutic strategies, including the modulation of DNA repair and targeting the DNA mutation itself

    Characterization of polypropylene–polyethylene blends by temperature rising elution and crystallization analysis fractionation

    Get PDF
    The introduction of single-site catalysts in the polyolefins industry opens new routes to design resins with improved performance through multicatalyst-multireactor processes. Physical combination of various polyolefin types in a secondary extrusion process is also a common practice to achieve new products with improved properties. The new resins have complex structures, especially in terms of composition distribution, and their characterization is not always an easy task. Techniques like temperature rising elution fractionation (TREF) or crystallization analysis fractionation (CRYSTAF) are currently used to characterize the composition distribution of these resins. It has been shown that certain combinations of polyolefins may result in equivocal results if only TREF or CRYSTAF is used separately for their characterization

    Huntington disease: natural history, biomarkers and prospects for therapeutics

    Get PDF
    Huntington disease (HD) can be seen as a model neurodegenerative disorder, in that it is caused by a single genetic mutation and is amenable to predictive genetic testing, with estimation of years to predicted onset, enabling the entire range of disease natural history to be studied. Structural neuroimaging biomarkers show that progressive regional brain atrophy begins many years before the emergence of diagnosable signs and symptoms of HD, and continues steadily during the symptomatic or 'manifest' period. The continued development of functional, neurochemical and other biomarkers raises hopes that these biomarkers might be useful for future trials of disease-modifying therapeutics to delay the onset and slow the progression of HD. Such advances could herald a new era of personalized preventive therapeutics. We describe the natural history of HD, including the timing of emergence of motor, cognitive and emotional impairments, and the techniques that are used to assess these features. Building on this information, we review recent progress in the development of biomarkers for HD, and potential future roles of these biomarkers in clinical trials

    CSF metabolites associated with biomarkers of Alzheimer’s disease pathology

    Get PDF
    INTRODUCTION: Metabolomics technology facilitates studying associations between small molecules and disease processes. Correlating metabolites in cerebrospinal fluid (CSF) with Alzheimer’s disease (AD) CSF biomarkers may elucidate additional changes that are associated with early AD pathology and enhance our knowledge of the disease. METHODS: The relative abundance of untargeted metabolites was assessed in 161 individuals from the Wisconsin Registry for Alzheimer’s Prevention. A metabolome-wide association study (MWAS) was conducted between 269 CSF metabolites and protein biomarkers reflecting brain amyloidosis, tau pathology, neuronal and synaptic degeneration, and astrocyte or microglial activation and neuroinflammation. Linear mixed-effects regression analyses were performed with random intercepts for sample relatedness and repeated measurements and fixed effects for age, sex, and years of education. The metabolome-wide significance was determined by a false discovery rate threshold of 0.05. The significant metabolites were replicated in 154 independent individuals from then Wisconsin Alzheimer’s Disease Research Center. Mendelian randomization was performed using genome-wide significant single nucleotide polymorphisms from a CSF metabolites genome-wide association study. RESULTS: Metabolome-wide association study results showed several significantly associated metabolites for all the biomarkers except Aβ42/40 and IL-6. Genetic variants associated with metabolites and Mendelian randomization analysis provided evidence for a causal association of metabolites for soluble triggering receptor expressed on myeloid cells 2 (sTREM2), amyloid β (Aβ40), α-synuclein, total tau, phosphorylated tau, and neurogranin, for example, palmitoyl sphingomyelin (d18:1/16:0) for sTREM2, and erythritol for Aβ40 and α-synuclein. DISCUSSION: This study provides evidence that CSF metabolites are associated with AD-related pathology, and many of these associations may be causal

    Obesity and diabetes mellitus association in rural community of Katana, South Kivu, in Eastern Democratic Republic of Congo : Bukavu Observ Cohort study results

    Get PDF
    Background: Factual data exploring the relationship between obesity and diabetes mellitus prevalence from rural areas of sub-Saharan Africa remain scattered and are unreliable. To address this scarceness, this work reports population study data describing the relationship between the obesity and the diabetes mellitus in the general population of the rural area of Katana (South Kivu in the Democratic Republic of the Congo). Methods: A cohort of three thousand, nine hundred, and sixty-two (3962) adults (>15 years old) were followed between 2012 and 2015 (or 4105 person-years during the observation period), and data were collected using the locally adjusted World Health Organization's (WHO) STEPwise approach to Surveillance (STEPS) methodology. The hazard ratio for progression of obesity was calculated. The association between diabetes mellitus and obesity was analyzed with logistic regression. Results: The diabetes mellitus prevalence was 2.8 % versus 3.5 % for obese participants and 7.2 % for those with metabolic syndrome, respectively. Within the diabetes group, 26.9 % had above-normal waist circumference and only 9.8 % were obese. During the median follow-up period of 2 years, the incidence of obesity was 535/100,000 person-years. During the follow-up, the prevalence of abdominal obesity significantly increased by 23 % (p < 0.0001), whereas the increased prevalence of general obesity (7.8 %) was not significant (p = 0.53). Finally, diabetes mellitus was independently associated with age, waist circumference, and blood pressure but not body mass index. Conclusion: This study confirms an association between diabetes mellitus and abdominal obesity but not with general obesity. On the other hand, the rapid increase in abdominal obesity prevalence in this rural area population within the follow-up period calls for the urgent promoting of preventive lifestyle measures

    Dendritic cell generation and CD4+CD25HIGHFOXP3+ regulatory T cells in human head and neck carcinoma during Radio-chemotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Regulatory T cells (Treg) and dendritic cells (DC) play an important role in tumor immunity and immune escape. However, their interplay and the effects of anti-cancer therapy on the human immune system are largely unknown.</p> <p>Methods</p> <p>For DC generation, CD14<sup>+ </sup>monocytes were enriched by immunomagnetic selection from peripheral blood of advanced head and neck squamous cell carcinoma (HNSCC) patients and differentiated into immature DC using GM-SCF and IL-4. DC maturation was induced by addition of TNFα. The frequency of CD4<sup>+</sup>CD25<sup>high</sup>F0XP3<sup>+ </sup>Treg in HNSCC patients was analyzed before and after radio-chemotherapy (RCT) by four-color flow cytometry.</p> <p>Results</p> <p>In HNSCC patients, the frequency of Treg (0.33 ± 0.06%) was significantly (p = 0.001) increased compared to healthy controls (0.11 ± 0.02%), whereas RCT had variable effects on the Treg frequency inducing its increase in some patients and decrease in others. After six days in culture, monocytes of all patients had differentiated into immature DC. However, DC maturation indicated by CD83 up-regulation (70.7 ± 5.5%) was successful only in a subgroup of patients and correlated well with lower frequencies of peripheral blood Treg in those patients.</p> <p>Conclusion</p> <p>The frequency of regulatory T cells is elevated in HNSCC patients and may be modulated by RCT. Monocyte-derived DC in HNSCC patients show a maturation deficiency ex vivo. Those preliminary data may have an impact on multimodality clinical trials integrating cellular immune modulation in patients with advanced HNSCC.</p

    Interaction of amyloid and tau on cortical microstructure in cognitively unimpaired adults

    Get PDF
    INTRODUCTION: Neurite orientation dispersion and density imaging (NODDI), a multi-compartment diffusion-weighted imaging (DWI) model, may be useful for detecting early cortical microstructural alterations in Alzheimer's disease prior to cognitive impairment. METHODS: Using neuroimaging (NODDI and T1-weighted magnetic resonance imaging [MRI]) and cerebrospinal fluid (CSF) biomarker data (measured using Elecsys® CSF immunoassays) from 219 cognitively unimpaired participants, we tested the main and interactive effects of CSF amyloid beta (Aβ)42/Aβ40 and phosphorylated tau (p-tau) on cortical NODDI metrics and cortical thickness, controlling for age, sex, and apolipoprotein E ε4. RESULTS: We observed a significant CSF Aβ42/Aβ40 × p-tau interaction on cortical neurite density index (NDI), but not orientation dispersion index or cortical thickness. The directionality of these interactive effects indicated: (1) among individuals with lower CSF p-tau, greater amyloid burden was associated with higher cortical NDI; and (2) individuals with greater amyloid and p-tau burden had lower cortical NDI, consistent with cortical neurodegenerative changes. DISCUSSION: NDI is a particularly sensitive marker for early cortical changes that occur prior to gross atrophy or development of cognitive impairment

    Semantic inference using chemogenomics data for drug discovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Semantic Web Technology (SWT) makes it possible to integrate and search the large volume of life science datasets in the public domain, as demonstrated by well-known linked data projects such as LODD, Bio2RDF, and Chem2Bio2RDF. Integration of these sets creates large networks of information. We have previously described a tool called WENDI for aggregating information pertaining to new chemical compounds, effectively creating evidence paths relating the compounds to genes, diseases and so on. In this paper we examine the utility of automatically inferring new compound-disease associations (and thus new links in the network) based on semantically marked-up versions of these evidence paths, rule-sets and inference engines.</p> <p>Results</p> <p>Through the implementation of a semantic inference algorithm, rule set, Semantic Web methods (RDF, OWL and SPARQL) and new interfaces, we have created a new tool called Chemogenomic Explorer that uses networks of ontologically annotated RDF statements along with deductive reasoning tools to infer new associations between the query structure and genes and diseases from WENDI results. The tool then permits interactive clustering and filtering of these evidence paths.</p> <p>Conclusions</p> <p>We present a new aggregate approach to inferring links between chemical compounds and diseases using semantic inference. This approach allows multiple evidence paths between compounds and diseases to be identified using a rule-set and semantically annotated data, and for these evidence paths to be clustered to show overall evidence linking the compound to a disease. We believe this is a powerful approach, because it allows compound-disease relationships to be ranked by the amount of evidence supporting them.</p

    Determinants of formation of aflatoxin-albumin adducts: a seven-township study in Taiwan

    Get PDF
    Dietary exposure to aflatoxins is one of the major risk factors for hepatocellular carcinoma. Individual susceptibility to aflatoxin-induced hepatocarcinogenesis may be modulated by both genetic and environmental factors affecting metabolism. A cross-sectional study was performed to evaluate determinants of the formation of aflatoxin covalently bound to albumin (AFB1-albumin adducts). A total of 474 subjects who were free of liver cancer and cirrhosis and were initially selected as controls for previous case–control studies of aflatoxin-induced hepatocarcinogenesis in Taiwan, were employed in this study. Aflatoxin-albumin adducts were determined by competitive enzyme-linked immunosorbent assay, hepatitis B surface antigen and antibodies to hepatitis C virus by enzyme immunoassay, as well as genotypes of glutathione S-transferase M1-1 and T1-1 by polymerase chain reaction. The detection rate of AFB1-albumin adducts was significantly higher in males (42.5%) than in females (21.6%) (multivariate-adjusted odds ratio=2.6, 95% confidence interval=1.4–5.0). The formation of detectable albumin adducts was moderately higher in hepatitis B surface antigen carriers (42.8%) than in non-carriers (36.6%) (multivariate-adjusted odds ratio=1.4, 95% confidence interval=1.0–2.1). In addition, the detection rate of AFB1-albumin adducts tended to increase with the increasing number of null genotypes of glutathione S-transferase M1-1 and glutathione S-transferase T1-1. In conclusion, this cross-sectional study has assessed the relative contributions of environmental exposure and host susceptibility factors in the formation of AFB1-albumin adducts in a well characterised Chinese adult population. This study further emphasises the necessity to reduce aflatoxin exposure in people living in an area endemic for chronic hepatitis B virus infection

    Quantification of Visual Field Loss in Age-Related Macular Degeneration

    Get PDF
    Background An evaluation of standard automated perimetry (SAP) and short wavelength automated perimetry (SWAP) for the central 10–2 visual field test procedure in patients with age-related macular degeneration (AMD) is presented in order to determine methods of quantifying the central sensitivity loss in patients at various stages of AMD. Methods 10–2 SAP and SWAP Humphrey visual fields and stereoscopic fundus photographs were collected in 27 eyes of 27 patients with AMD and 22 eyes of 22 normal subjects. Results Mean Deviation and Pattern Standard Deviation (PSD) varied significantly with stage of disease in SAP (both p<0.001) and SWAP (both p<0.001), but post hoc analysis revealed overlap of functional values among stages. In SWAP, indices of focal loss were more sensitive to detecting differences in AMD from normal. SWAP defects were greater in depth and area than those in SAP. Central sensitivity (within 1°) changed by −3.9 and −4.9 dB per stage in SAP and SWAP, respectively. Based on defect maps, an AMD Severity Index was derived. Conclusions Global indices of focal loss were more sensitive to detecting early stage AMD from normal. The SWAP sensitivity decline with advancing stage of AMD was greater than in SAP. A new AMD Severity Index quantifies visual field defects on a continuous scale. Although not all patients are suitable for SWAP examinations, it is of value as a tool in research studies of visual loss in AMD
    corecore