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Huntington disease (HD) is a neurodegenerative disease caused by CAG repeat expansion in the  HTT 11 

gene and involves a complex web of pathogenic mechanisms. Mutant HTT disrupts transcription, 12 

interferes with immune and mitochondrial function, and is aberrantly modified post-translationally. 13 

Evidence suggests that the mHTT RNA is toxic, and at the DNA level, somatic CAG repeat expansion 14 

in vulnerable cells influences disease course. Genome-wide association studies have identified DNA 15 

repair pathways as modifiers of somatic instability and disease course in HD and other repeat expansion 16 

diseases. In animal models of HD, nucleocytoplasmic transport is disrupted and its restoration is 17 

neuroprotective. Novel cerebrospinal fluid (CSF) and plasma biomarkers are amongst the earliest 18 

detectable changes in individuals with premanifest HD, and have the sensitivity to detect therapeutic 19 

benefit. Therapeutically, the first human trial of a HTT-lowering antisense oligonucleotide successfully, 20 

and safely, reduced CSF concentration of mHTT in individuals with HD. A larger trial, powered to 21 

detect clinical efficacy, is underway, along with trials of other HTT-lowering approaches. In this 22 

Review, we discuss new insights into the molecular pathogenesis of HD and future therapeutic 23 

strategies, including the modulation of DNA repair and targeting the DNA mutation itself. 24 
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[H1] Introduction 25 

Huntington disease (HD) is caused by a dominantly inherited CAG repeat expansion in exon 1 of the 26 

Huntingtin gene (HTT), and is characterised by progressive involuntary choreiform movements [G] , 27 

behavioural and psychiatric disturbances, and dementia1. HD is one of over 40 diseases that are caused 28 

by expansion of simple repeats, most of which, for unknown reasons, primarily affect the nervous 29 

system2. CAG encodes the amino acid glutamine and a sequence of several glutamine units is referred 30 

to as a polyglutamine tract; HD is the most common of the nine polyglutamine diseases2. HD occurs 31 

worldwide and has a prevalence of ~12 per 100,000 individuals in populations of European descent3. 32 

Onset of the motor symptoms of HD, known as motor onset, can occur from childhood to old age, with 33 

a mean onset around 45 years, and is followed by inexorable disease progression4,5. Repeats of 36 or 34 

more CAG units are pathogenic, with longer repeats typically causing earlier onset1. Repeats of between 35 

36 and 39 CAG units confer reduced penetrance1, and individuals carrying these reduced penetrance 36 

alleles are likely to be carriers of HD with disease onset beyond the normal lifespan. 37 

Huntingtin (HTT) is a large, ubiquitously expressed protein, the evolution of which can be traced back 38 

over millions of years6. The polyglutamine tract first appeared in the sea urchin and increased in length 39 

throughout the evolution of vertebrates; humans have the longest tract7. HTT contains both nuclear 40 

export and nuclear localisation signals, so the protein shuttles between nucleus and cytoplasm via active 41 

transport 8-10. HTT is involved in CNS development, including neural tube formation and neuroblast 42 

migration, and HTT knockout mice die before birth, shortly after the formation of the nervous 43 

system11,12. HTT is also involved in axonal transport, synaptic function and cell survival13.  44 

The mutant huntingtin protein (mHTT) that results from CAG repeat expansion affects many cellular 45 

functions, leading to cell death, and establishing which of these effects are primary or secondary 46 

pathogenic processes is difficult. Striatal medium spiny neurons are most vulnerable to the presence of 47 

mHTT, although substantial neuronal dysfunction and death also occurs in the cerebral cortex14-18. 48 

Polyglutamine tract length affects the post-translational modification of HTT, which in turn influences 49 

the subcellular distribution, stability, cleavage and function of the protein19. HTT also binds and 50 

interacts with DNA in many genes, and the presence of an expanded polyglutamine tract in HTT results 51 
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in transcriptional dysregulation20. Transcription is substantially disrupted in the brains of individuals 52 

with HD compared with healthy controls21. This disruption results in upregulation of the immune 53 

response and mRNA processing, and downregulation of metabolic processes and synaptic function. The 54 

anatomical distribution of transcriptional disruption correlates with areas of cell death, being most 55 

marked in the caudate nucleus21. Transcriptional dysregulation also occurs in the peripheral tissues of 56 

individuals with HD, such as muscle and blood, and the sets of genes that are dysregulated significantly 57 

overlap with those that are dysregulated in the caudate20. 58 

Animal models of HD have had a key role in increasing our understanding of pathogenesis and testing 59 

therapeutic compounds; genetic models are produced by introducing all or part of human mHTTin a 60 

transgene, or inserting an expanded CAG repeat into the endogenous HTT gene, which is known as a 61 

‘knock in’ strategy 22. Invertebrate models of HD, such as C. elegans and drosophila, show progressive 62 

neurodegeneration, motor abnormalities and reduced survival 23. Rodent models of HD are the most 63 

commonly used, and show HTT aggregation, somatic instability, motor, cognitive and behavioural 64 

abnormalities, and reduced lifespan24. Large animal models, including sheep, pigs and non-human 65 

primates, are genetically more similar to humans, but use of these models has been limited by expense 66 

and the lag time to symptom onset. In this Review, we discuss the latest developments in our 67 

understanding of the pathogenesis of HD, and discuss new CSF and plasma biomarkers. We also review 68 

ground-breaking clinical trials of HTT-lowering therapies and discuss future therapeutic strategies that 69 

target the DNA mutation itself. 70 

[H1] Pathogenesis of HD  71 

In this section, we summarise the current understanding of the molecular mechanisms underlying HD, 72 

before introducing the latest developments in our understanding of disease pathogenesis in the sections 73 

that follow. In individuals with HD, the expanded polyglutamine tract causes mHTT to fold abnormally, 74 

which causes soluble monomers of HTT protein to combine, forming oligomers. These oligomers then 75 

act as seeds for the formation of mHTT fibrils and large inclusions in both the cytoplasm and nucleus25-76 

27. Large mHTT inclusions were previously thought to be pathogenic 28,29, but inclusions can occur 77 

without cell death, and vice versa30-32. More recent evidence suggests that N-terminal mHTT oligomers 78 
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are toxic33-38, and that the subsequent formation of inclusions might even be protective31,34. This topic 79 

is discussed in more detail below (Toxic exon1 protein). Endoplasmic reticulum stress precedes, and 80 

then improves on mHTT aggregation, suggesting the toxicity of oligomers is mitigated by their 81 

aggregation into larger inclusions39,40. Small mHTT oligomers and fibrils, which are precursors of large 82 

inclusions, have been observed in the brains of individuals with HD41,42. In mouse and drosophila 83 

models of HD, the formation of mHTT oligomers and fibrils occured before the onset of symptoms, 84 

and levels increased as the disease progressed42. Polyglutamine-containing N-terminal fragments of 85 

mHTT, which can be produced either by proteolytic cleavage26 or abnormal splicing43, aggregate in the 86 

brains of individuals with HD44 more rapidly than the full length protein does45-47.  87 

Evidence also suggests that mHTT can transfer between cells. For example, synthetic polyglutamine 88 

peptides can be taken up by cells in culture48,49, and in co-culture experiments, fluorescently tagged 89 

mHTT can transfer between neighbouring cells50,51, including through tunnelling nanotubes. 90 

Furthermore, in Drosophila, mHTT can be released from synaptic terminals and taken up by 91 

neighbouring neurons by endocytosis52, and mHTT taken up phagocytically by Drosophila glia, can act 92 

as a seed for aggregation of wild-type HTT, which is properly folded and would not usually aggregate53. 93 

In one study, mHTT spread between neurons via functional synapses in three models, including from 94 

human HD iPSC-derived neurons to wild-type mouse brain slices, from HD mouse cortical neurons to 95 

medium spiny neurons in a wild-type mouse corticostriatal brain slice, and following injection of a 96 

mHTT fragment into wild-type mouse cortex54. This contiguous propagation is distinct from truly 97 

‘prion-like’ behaviour, which involves the infectious prion protein inducing the misfolding of the 98 

normal form and has not been demonstrated in HD55. Evidence for cell-to-cell spread of mHTT in 99 

humans is more limited; postmortems of individuals who had received fetal striatal transplants showed 100 

inclusions in the extracellular matrix of the graft, suggesting that mHTT is released by neurons, 101 

although no inclusions were found within cells56. 102 

The two main protein degradation systems of the cell are the ubiquitin–proteasome system, which clears 103 

damaged proteins, and autophagy, which degrades protein complexes and damaged organelles. 104 

Evidence from human tissue and animal models suggests that these systems are compromised in 105 
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HD57,58. Furthermore, inducing autophagy increases mHTT clearance and improves the phenotype in 106 

animal models of the disease59. CNS inflammation has been implicated in several neurodegenerative 107 

diseases, including Alzheimer disease, Parkinson disease, multiple sclerosis, prion disease and 108 

amyotrophic lateral sclerosis20,60,61, although whether this inflammation is a primary pathogenic process 109 

or a response to other pathologies remains unclear. The levels of reactive microglia and 110 

proinflammatory mediators in the brain are higher in individuals with HD than in healthy controls62,63, 111 

and immune activation is also observed in the peripheral blood of individuals with the disease61. 112 

Mitochondria were implicated in HD pathogenesis after mitochondrial toxins, such as 3-nitropropionic 113 

acid, were found to cause selective death of striatal medium spiny neurons64. Mitochondrial ATP 114 

production, which is essential for the survival of neurons, is lower in postmortem brain samples from 115 

individuals with HD than in control samples65; this observation is supported by evidence from animal 116 

and cell models of HD47,66,67. Mitochondrial ultrastructure is disrupted in the brains of individuals with 117 

HD68, and the number of mitochondria69 and the activity of enzyme complexes70-72 is lower than in 118 

controls. Furthermore, mitochondrial membrane potential is lower in lymphoblasts derived from 119 

individuals with HD than in lymphoblasts from controls73,74. Brain imaging studies showed that, in some 120 

brain regions, individuals with HD had lower levels of glucose metabolism and higher lactate 121 

concentration than healthy individuals75-78, which could be a result of mitochondrial alterations. In 122 

animal models, mHTT disrupted anterograde and retrograde motility of mitochondria79-81, resulting in 123 

the accumulation of mitochondria in the soma82. In addition, the expression of PGC1α, which regulates 124 

mitochondrial biogenesis, is lower in cell and animal models of HD than in controls70,83. mHTT interacts 125 

with the mitochondrial outer membrane, thus triggering calcium release that could cause cell death84,85, 126 

and also interacts with the inner mitochondrial membrane, thus disrupting the import of mitochondrial 127 

proteins86,87. 128 

Although a substantial body of evidence suggests that the mHTT protein is toxic, neurodegeneration 129 

was observed in animal models that express untranslated CAG repeat-containing transcripts, suggesting 130 

that mHTT RNA can also contribute to cell death88. RNA foci [G] were also toxic in animal models 131 

with CAG repeats in ATXN3 or GFP89-91. Unconventional translation initiation, or repeat-associated 132 
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non-ATG translation [G], occurs in the brains of individuals with HD in a CAG length-dependent 133 

manner and produces monopeptides that aggregate, particularly in the striatum, but the toxicity of these 134 

monopeptides has not yet been established92,93. Indeed, a very recent study has shown that HD knock-135 

in mice lack repeat-associated non-ATG translation-mediated toxicity, suggesting that the role of this 136 

form of translation in HD pathogenesis is debatable94. 137 

The HTT CAG repeat is somatically and meiotically unstable, progressively lengthens throughout life 138 

and tends to expand between generations95-97. In studies that analysed samples of blood and post-139 

mortem cortex from individuals with HD, greater CAG expansion was associated with an earlier age of 140 

disease onset97,98, suggesting that somatic instability [G] of the CAG repeat has a role in pathogenesis. 141 

The degree of somatic instability varies among tissues, with expansion particularly prominent in 142 

neurons from brain regions that show marked pathology such as the striatum and cortex99-101, in which 143 

repeats of over 1,000 CAG have been observed post-mortem102. In other tissues, such as cerebellum 144 

and blood, the CAG repeat was relatively stable, either not changing with age or increasing by only a 145 

few CAG in a small proportion of cells103. In one study, a mathematical model fitted to data on repeat 146 

length and phenotype in individuals with HD104 indicated that motor onset occurs when the repeat 147 

expands beyond a threshold of around 115 CAG units in a sufficient number of vulnerable cells105. In 148 

postmortem brain tissue from individuals with HD and animal models, the anatomical distribution of 149 

somatic CAG repeat instability often overlaps with areas of HD neuropathology, suggesting that 150 

somatic CAG expansion might underlie the selective vulnerability of striatal medium spiny neurons106. 151 

 152 

[H2] Genetic modifiers  153 

Pure CAG repeat length is the main determinant of the course of HD107 and accounts for around 50–154 

70% of variation in age at onset98,108, but up to half of the remaining variability is also heritable and 155 

therefore results from differences elsewhere in the genome109. Large patient cohorts are now available 156 

in which to carry out unbiased, genome-wide searches for disease course-modifying genetic variation. 157 

The Genetic Modifiers of Huntington’s Disease (GeM-HD 110consortium’s genome-wide association 158 
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study (GWAS) of 4,082 individuals with HD identified two loci, one on chromosome 8 and the other 159 

on chromosome 15, that were associated with age at onset107. Two independent signals identified on 160 

chromosome 15 were likely to correspond to the gene encoding FAN1, which is a DNA endonuclease 161 

and exonuclease that is involved in interstrand crosslink repair and replication fork recovery111. One of 162 

these chromosome 15 signals was associated with disease onset >6 years earlier than would be expected 163 

from CAG length alone, and the other was associated with disease onset 1.4 years later than expected. 164 

Knockout or short hairpin RNA-mediated lowering of FAN1 increased somatic expansion of the HTT 165 

CAG repeat in a human osteosarcoma cell line, patient-derived iPSCs and differentiated neurons112. 166 

Although the known functions of FAN1 all involve nuclease activity, inactivation of the FAN1 nuclease 167 

domain did not influence the rate of CAG expansion. This observation suggests that an unknown 168 

function of FAN1, such as an interaction with other DNA repair components, is protective against CAG 169 

repeat instability. Knockout of FAN1 in a mouse model of Fragile X syndrome increased the somatic 170 

expansion of a CGG repeat, indicating that FAN1 also is also involved in other repeat expansion 171 

diseases113. Curiously, FAN1 knockout did not alter intergenerational CGG repeat expansion, 172 

suggesting that the mechanisms underlying somatic and meiotic instability could be distinct. The 173 

chromosome 8 signal observed in the GeM-HD GWA study was associated with disease onset 1.6 years 174 

earlier than expected from CAG repeat length and could correspond to RRM2B, which is involved in 175 

nucleotide synthesis, or UBR5, a ubiquitin ligase which might have a role in HTT aggregation114,115. 176 

In another study, the disease onset-modifying variants identified by the GeM-HD 110 were genotyped 177 

in an independent cohort of 3,314 individuals from the European Huntington’s Disease Network and 178 

the signals on chromosome 8 and 15 were again associated with age at disease onset98. In addition, a 179 

locus at MLH1 on chromosome 3, that was not identified in the GeM-HD GWAS, was associated with 180 

a 0.7 year delay in disease onset. MLH1, part of the mismatch repair MutL endonuclease complexes, 181 

which cut DNA, is required for somatic instability in HD mice116 and directly interacts with FAN1112. 182 

In a study by Hensman Moss, et al. 117 a disease progression measure based on longitudinal motor, 183 

cognitive and imaging data was used to conduct a GWAS in 216 participants from the TRACK-HD 184 

study and 1,773 participants from the REGISTRY study. Variation at a chromosome 5 locus, which 185 
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corresponds to MSH3 or DHFR, was associated with slower disease progression, as well as reduced 186 

MSH3 expression in blood and fibroblasts. MSH3 identifies mis-paired bases or loop-outs and initiates 187 

DNA mismatch repair118; knockout of MSH3 in a mouse model of HD prevented somatic expansion 188 

and decreased mHTT aggregation in striatal neurons119,120. DHFR is an enzyme involved in nucleotide 189 

and amino acid synthesis121. Another study showed that the chromosome 5 signal was driven by a 9 bp 190 

tandem repeat variant in exon 1 of MSH3122 . In individuals with HD, this variant was associated with 191 

reduced MSH3 expression in blood and brain122, decreased somatic CAG expansion, delayed disease 192 

onset and slower progression122 In individuals with myotonic dystrophy type 1 (DM1), which is caused 193 

by a CTG repeat expansion in DMPK, the same MSH3 variant was associated with less somatic 194 

expansion and delayed disease onset122. MSH3 and DHFR share a bidirectional promoter, but increased 195 

expression of MSH3 was associated with more repeat expansion and earlier onset of HD, whereas 196 

increased expression of DHFR was not122. The GeM-HD GWAS110 was recently extended to include a 197 

total of 9,064 individuals with HD98. This extended study replicated the findings of the original GeM-198 

HD GWAS and also identified new HD onset-associated loci that correspond to the DNA repair genes 199 

PMS1, MSH3, PMS2 and LIG1, as well as HTT, TCERG1 and CCDC82. TCERG1 is a nuclear regulator 200 

of transcriptional elongation and splicing, and was proposed as a potential HD modifier due to its 201 

interaction with HTT123,124, whereas CCDC82 is a relatively unknown coiled-coil domain protein that 202 

is phosphorylated in response to oxidative stress125. The HTT signal resulted from sequence variation 203 

within the CAG repeat. At the very 3’ end of the CAG tract there is a CAACAG motif, which encodes 204 

an extra two glutamines. In individuals lacking this CAA interruption the onset of HD occurred an 205 

average of 12.7 years earlier than would be expected from CAG repeat length, and in individuals with 206 

a duplication of the CAACAG motif, onset was delayed by an average of 5.7 years, despite the 207 

duplication increasing the total number of glutamines. Loss of the CAA interruption is also associated 208 

with increased somatic HTT CAG expansion in blood and sperm107. Such interruptions, which can have 209 

different sequences, limit expansion in many repeat disorders, including spinocerebellar ataxia (SCA) 210 

type 1, 2, 3 and 17; fragile X syndrome; Friedreich's ataxia and DM1126. HTT CAG repeat length 211 

predicted the age of HD onset more accurately than the number of glutamines in the protein, suggesting 212 

that altered DNA repair, acting through somatic expansion, is the main modifier of pathogenesis98,107. 213 
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Therefore, introducing interruptions into the HTT CAG could be a strategy for the treatment of HD. 214 

The occurrence of HTT CAG sequence variation, although rare, means PCR fragment-sizing assays, 215 

which assume that a single CAACAG motif is present, might overestimate or underestimate pure CAG 216 

repeat length, and could contribute to the variable penetrance of alleles sized at 35–39 repeats 107. 217 

On chromosome 5, the extended GeM-HD GWAS98 replicated the findings from the Hensman Moss, 218 

et al. 117 study by identifying a locus corresponding to MSH3 or DHFR that was associated with 0.6 219 

year delayed onset of HD81. Two additional, independent signals were also identified at MSH3 or 220 

DHFR, one associated with an 0.8-year earlier onset and the other associated with a 6.1-year delay in 221 

onset. The onset-hastening variant was associated with higher expression of MSH3 and increased CAG 222 

expansion in blood. In LIG1, which encodes a DNA ligase that seals DNA to complete replication and 223 

repair127, two signals were identified, one associated with a <1 year delay in onset and the other 224 

associated with <1 year earlier onset. In a transcriptome-wide association study, the onset-hastening 225 

variant was associated with higher LIG1 expression in cortex98, which is consistent with the increase in 226 

CAG instability that was observed when LIG1 was overexpressed in human cells in vitro 128, as well as 227 

the reduced expansion and increased CTG repeat contraction seen in DM1 mice with a mutation that 228 

impairs Lig1 activity129. A third, rare variant in LIG1 that was predicted to impair protein function was 229 

associated with a 7.7-year delay in onset of HD.  230 

MLH1 heterodimerises with PMS2, PMS1 or MLH3 to form the MutLα, MutLβ or MutLγ mismatch 231 

repair endonuclease complexes, respectively. Variation in PMS2 was associated with 0.8-year delayed 232 

onset, and PMS1 with 0.8-year earlier onset 98. MLH3 was associated with age at disease onset in a 233 

gene-wide association analysis98, and is a component of DNA repair pathways that were also associated 234 

with disease onset. Interestingly, knockout of Pms2 and Mlh3, but not Pms1, reduced somatic instability 235 

in HD mice116,130. In a transcriptome-wide association study, increased expression of FAN1 and PMS1, 236 

and decreased expression of MSH3, in cortex were associated with later onset of HD81. Taken together, 237 

these results suggest that MutLα and MutLγ promote HD pathogenesis, and that MutLβ inhibits HD 238 

pathogenesis. 239 
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Interestingly, one study showed that some of the variants identified as HD modifiers in the GeM-HD 240 

GWAS110, including FAN1 and RRM2B, also influenced the age of onset of other polyglutamine 241 

diseases131. This observation suggests that DNA repair, probably acting through somatic expansion, is 242 

a common contributor to pathogenesis in CAG expansion diseases. Genetic association studies132 118, as 243 

well as studies using mouse models118, human cell lines133-139, or patient-derived cells134,140,141, have also 244 

implicated MutSβ (MSH2 and MSH3), MutSα (MSH2 and MSH6), MutLα and MutLγ in DM1, 245 

Friedreich's ataxia and fragile X repeat instability. 246 

[H3] Implications for HD pathogenesis 247 

The results of these genetic association studies indicate that DNA repair activity is central to the 248 

pathogenesis of HD, with variants in repair proteins likely to influence the rate of somatic expansion in 249 

tissues that are vulnerable to repeat instability and neurodegeneration126. The proposed models of CAG 250 

repeat instability all involve DNA slippage, with displacement of single stranded DNA at repeated 251 

sequences leading to mispairing of the complementary bases142. MutSβ identifies DNA loop-outs in the 252 

CAG tract and targets them for repair by MutLα or Mutlγ; incorrect repair of the loop-outs could 253 

introduce short incremental expansions143 (Fig. 1). MutSα does not seem to be involved in HTT CAG 254 

instability, which is likely to be because it recognises small DNA loop outs of 1–2 bases, rather than 255 

the longer loop outs targeted by MutSβ144. In individuals with DM1, clusters of slipped DNA structures 256 

are found in tissues with the highest levels of repeat instability, including heart and cortex, but not in 257 

the cerebellum, which shows little or no instability142. A study of DNA oligonucleotides showed that 258 

the stability of these DNA loop-outs at CAG, CTG and CGG repeats is correlated with the threshold 259 

for repeat expansion and the expansion rate145. CAG·CTG repeat expansion occurs in post-mitotic 260 

neurons112,146 and continues when the cell cycle is arrested147, suggesting that expansion occurs during 261 

DNA repair or transcription. However, evidence also exists for replication-associated trinucleotide 262 

repeat instability148. The result of this kind of instability depends on the direction of DNA replication, 263 

with expansion of CAG and CTG repeats occurring when CAG is on the lagging strand [G], as is the 264 

case in HD, SCA7 and DM1149, and contraction occurring when CTG is on the lagging strand. This 265 
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direction-dependence might be because CAG and CTG repeats have different propensities to form 266 

slipped structures, or are processed differently by repair machinery. 267 

Excitingly, most of the HD-modifying variants and pathways converge on specific DNA repair 268 

mechanisms, particularly mismatch repair, and influence somatic instability98,110,112,117,122. These 269 

observations suggest that downregulation of MSH3, MutLα, MutLγ and LIG1, the inhibition of 270 

interactions between them, or the upregulation of FAN1 and PMS1, could reduce somatic CAG 271 

expansion and improve the course of HD (Acknowledgements  272 
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Key points 311 

 Proteins involved in DNA repair, particularly mismatch repair, can modify the age of onset and 312 

rate of progression of HD, likely by altering the rate of somatic expansion of CAG repeats in 313 

the Huntingtin gene. 314 

 The modulation of DNA repair factors, such as MSH3, FAN1, PMS2 or LIG1, has therapeutic 315 

potential in HD and other repeat expansion diseases. 316 
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 Nucleocytoplasmic transport is disrupted in HD by sequestration of nuclear pore components 317 

in Huntingtin (HTT) aggregates; modulation of nucleocytoplasmic transport is neuroprotective 318 

and might provide a novel therapeutic opportunity. 319 

 Changes in cerebrospinal fluid and serum biomarkers, including neurofilament light chain  and 320 

mHTT, are amongst the earliest detectable changes in HD and can predict disease onset and 321 

track progression. 322 

 Intrathecally-delivered non-allele selective antisense oligonucleotides (ASOs) have 323 

successfully lowered HTT concentration in the central nervous system of individuals with HD, 324 

and trials of allele-specific ASOs are under way. 325 

 Gene editing strategies for HTT lowering, including zinc finger proteins, transcription 326 

activator-like effector nucleases and CRISPR-Cas9, are currently in preclinical development, 327 

but need to be delivered via the injection of viral vectors, which can be challenging. 328 

Fig. 1). Although variants in some mismatch repair components such as MLH1, MSH2, MSH6 and 329 

PMS2 are associated with cancer, which indicates the need for caution150,151, the activity of these 330 

proteins can vary over a wide range in the general population without adverse effects and none of the 331 

modifiers of HD onset or progression have been identified as risk factors in GWA studies of cancer 332 

predisposition98,152. Importantly, MSH3 and LIG1 are tolerant of loss of function mutations153, making 333 

them appealing targets for knockdown, which human genetic data suggest will be protective against 334 

HD98. Therefore, the modulation of DNA repair has great therapeutic potential in HD, as well as other 335 

repeat expansion diseases. 336 

[H2] New findings in molecular pathogenesis  337 

Despite the decades that have passed since the discovery of the pathogenic HTT mutation in 1993154, 338 

the normal function of HTT and the primary pathogenic mechanism(s) of the mutation remain unclear. 339 

As our ability to intervene at the DNA, RNA and protein level improves, we need to understand the 340 

pathogenesis of HD to enable the identification of new therapeutic targets and understand the effects of 341 

modulating these targets. In this section we discuss key developments in our understanding of HD 342 
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pathogenic mechanisms that have occurred in the last 5 years, including the toxicity of HTT fragments, 343 

dysfunction of the nuclear pore and insights into the structure of the HTT protein. 344 

[H3] Toxic exon 1 protein 345 

Two alternatively spliced transcripts arise from HTT. These transcripts differ in the length of their 3’ 346 

untranslated region (UTR) by 3 kb, but give rise to the same HTT protein155. The longer transcript is 347 

predominantly expressed in the brain, whereas the shorter version is more widespread155. However, 348 

highly toxic N-terminal mHTT fragments also exist. Initially, these N-terminal fragments were 349 

attributed to proteolytic cleavage of mHTT by caspases and calpains156, but mHTT can also be mis-350 

spliced to generate a short mRNA, which is translated into a highly toxic N-terminal fragment that 351 

contains exon 143. This short exon 1 transcript was observed in mouse models of HD and in post-mortem 352 

brain samples from individuals with the disease; levels were highest in the brains of individuals with 353 

juvenile-onset HD43,157. The generation of exon 1 mRNA is thought to result from splicing factors 354 

binding to the CAG repeat and allowing read-through into intron 1, which contains a stop codon 43. The 355 

aberrant splicing seems to be CAG length-dependent and is only seen in mutant alleles43. Mice 356 

expressing N-terminal huntingtin fragments develop a severe phenotype much earlier than those with a 357 

similar number of repeats in full-length mHTT158. The extent to which the mis-splicing of HTT exon 1 358 

contributes towards neuropathology in humans remains to be seen. 359 

[H3] Nuclear pore complex disruption 360 

The nuclear pore complex (NPC) is the main conduit by which proteins and RNA are actively 361 

transported between nucleus and cytoplasm, and consists of complexes of protein subunits called 362 

nucleoporins (NUP) that span the nuclear envelope (Fig. 2) 159. Interestingly, recessive mutations in the 363 

gene encoding nucleoporin NUP62, which is located in the central channel of the NPC, cause infantile 364 

bilateral striatal necrosis160, suggesting a role for NPC dysfunction in the tissue specificity of HD 365 

pathology. Ran, which is a small protein involved in nuclear transport, is converted from its GDP-bound 366 

form (Ran-GDP) to its GTP-bound form (Ran-GTP) by RCC1 inside the nucleus, and is converted back 367 

to Ran-GDP through interaction with RanGAP1, which is located on the cytoplasmic filaments of the 368 
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NPC (Fig. 2a). Ran can diffuse freely within the cell, but because RCC1 is located in the nucleus and 369 

RanGAP1 is located in the cytoplasm, a concentration gradient of Ran forms is established, with more 370 

Ran-GTP in the nucleus and more Ran-GDP in the cytoplasm161. This gradient acts as a signal for 371 

cellular processes161. During nuclear import, cargo proteins are released into the nucleus when their 372 

transporter molecule, known as a karyopherin, interacts with Ran-GTP. Conversely, in nuclear export, 373 

cargo proteins are released into the cytoplasm when Ran-GTP is hydrolysed to Ran-GDP by RanGAP1 374 

(Fig. 2a). The nuclear to cytoplasmic Ran gradient generated by RanGAP1 is critical, and its loss rapidly 375 

results in cell death162. 376 

Interestingly, mHTT binds to RanGAP1 with greater affinity than the wild-type HTT protein does163. 377 

In one study, immunofluorescent detection of NPC proteins in brain tissue from mouse models of HD 378 

showed that RanGAP1 and the nucleoporins NUP62 and NUP88 are sequestered in mHTT aggregates, 379 

which grow with age and are most prominent in the striatum164. More RanGAP1 was sequestered as the 380 

disease progressed. Intrastriatal microRNA [G] (miRNA)-mediated knockdown of the small ubiquitin-381 

like modifier (SUMO) ligase PIAS reduced mHTT aggregation153, and thereby restored RanGAP1 382 

levels. In post-mortem brain samples from individuals with HD, mitochondrial, RanGAP1 and NUP62 383 

were displaced from their normal perinuclear location into aggregates, the cytoplasm or the nucleus, 384 

consistent with disruption of nuclear transport164. Immunofluorescent detection of Ran showed that, 385 

compared with cells from healthy individuals, iPSC-derived neurons from individuals with HD had a 386 

disrupted Ran gradient, with more Ran-GDP in the cytoplasm and less Ran-GTP in the nucleus, which 387 

suggests a failure of active transport164. MAP2 is usually too large to cross the NPC by passive transport, 388 

but levels of nuclear MAP2 were higher in iPSC-derived neurons from individuals with HD than in 389 

cells from healthy individuals, suggesting that in HD the NPC is compromised and leaky. In mouse 390 

primary cortical neurons transfected with human HTT containing a wild-type 22 CAG repeat or an 391 

expanded 82 CAG repeat, a reporter bearing both nuclear import and export signals was observed 392 

mostly in the cytoplasm, suggesting nuclear import is particularly deficient. Interestingly, repeat-393 

associated non-ATG translation HTT dipeptides also disturbed active and passive nuclear transport164. 394 

In a mouse line with a hexanucleotide GGGGCC repeat expansion in C9orf72, which causes 395 
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amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in humans, repeat-associated 396 

non-ATG translation dipeptides sequestered NUPs in aggregates165, and in a human cell line these 397 

dipeptides blocked the nuclear pore166. 398 

Overexpression of RanGAP1 in mouse primary cortical neurons reduced the amount of cell death 399 

caused by the expression of mHTT164. In Drosophila, overexpression of Ran rescued the 400 

neurodegeneration caused by expression of an N-terminal mHTT fragment, whereas overexpression of 401 

a dominant negative form of Ran exacerbated neurodegeneration164. O-GlcNAcylation, a post-402 

translational modification in which an uncharged acetylated glucosamine (O-GlcNAc) is attached to a 403 

serine or threonine residue, is vital for the localisation and function of nucleoporins167. A study that 404 

used  immunofluorescent techniques to visualise O-GlcNAc residues in brain sections found that O-405 

GlcNAc levels in cortical cells were lower in a mouse model of HD than in wild-type mice164,127. O-406 

GlcNAcase removes O-GlcNAc modifications, and inhibition of O-GlcNAcase with Thiamet-G 407 

protected against mHTT-related cytotoxicity and restored nucleocytoplasmic transport in primary 408 

cortical neurons from a rodent model of HD164. Furthermore, inhibition of nuclear export with KPT-409 

350 was neuroprotective in a mouse model of demyelination168. A similar molecule, which also blocks 410 

nuclear export, reduced neurodegeneration in the eye of a drosophila model that expresses 30 GGGGCC 411 

repeats in C9orf72169 and restored nucleocytoplasmic transport in rodent primary neurons that 412 

overexpress TDP43170. These observations suggest that inhibition of nuclear export could compensate 413 

for the disruption of nuclear import that occurs in HD. 414 

[H3] HTT protein structure 415 

Some aspects of HTT protein structure were recently determined using cryo-electron microscopy 416 

(EM)171. This new information could provide greater insight into the normal cellular functions of HTT, 417 

and the pathogenesis of HD171. The purification of HTT required co-expression and co-isolation with 418 

HAP-40 (Huntingtin-Associated Protein of 40 KDa), which binds tightly to HTT172. HAP-40 has roles 419 

in endosome function173, which is consistent with the role of HTT in vesicle transport. The cryo-EM 420 

structure showed that HTT consists mainly of supercoiled alpha-helical structures termed “HEAT 421 

Repeats”, which had been suggested by the results of previous computational, biochemical, electron 422 
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microscopy and mass spectrometry studies6,174-176. The full-length HTT protein bound to HAP-40 has a 423 

compact shape, with three domains — an N-terminal domain, a bridge domain, and a C-terminal domain 424 

— wrapped tightly around HAP-40. Unfortunately, several key domains of HTT were not resolved in 425 

the cryo-EM structure. These unresolved domains include an N-terminal domain that is approximately 426 

the length of exon-1 and contains the poly-glutamine repeat, and a number of loops that are thought to 427 

contain unstructured proteolytically sensitive regions. These loops contain many sites of post-428 

translational modification13,177, which can modulate the toxicity of mHTT, possibly by regulating HTT 429 

proteolysis and the interaction of HTT with other proteins178. Thus, further studies of HTT structure and 430 

biochemistry could provide more information on the normal function and pathogenic interactions of the 431 

protein. 432 

 [H1] New biofluid biomarkers  433 

Biomarkers are measurable indicators of the severity of a disease and can enable the measurement or 434 

prediction of clinical progression, as well as the detection of therapeutically-induced improvement. 435 

However, before a biomarker can be considered as a surrogate marker of a clinical endpoint, it must be 436 

well understood in terms of disease pathobiology, and must meet strict requirements, including those 437 

relating to measurability, accuracy, specificity and reproducibility179-181. mHTT is thought to be released 438 

from damaged neurons182 and the concentration of mHTT in CSF samples can be reliably quantified 439 

with ultra-sensitive immunoassays that have been validated for use in clinical trials183,184. The 440 

concentration of mHTT in the CSF of individuals with HD correlates with disease stage and severity, 441 

which is determined by age at onset, disease burden score, and Unified Huntington’s Disease Rating 442 

Scale (UHDRS) motor score183-185. CSF mHTT concentration was also the key pharmacodynamic 443 

biomarker used in the first clinical trial to demonstrate dose-dependent mHTT-lowering with an 444 

antisense oligonucleotide (ASO) in individuals with HD186. 445 

Neurofilament light protein (NfL) is found principally in axons and is released by neuronal damage, for 446 

example, in one study serum NfL concentration rose within two weeks of head trauma, compared with 447 

uninjured participants, and normalised after 3 months187. In several studies, CSF NfL concentration was 448 

higher in individuals with HD than in healthy individuals, increased with disease progression and 449 
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predicted the rate of progression in individuals with HD188-192. A strong correlation between CSF and 450 

plasma NfL levels was observed, which suggests that NfL originates in the CSF191. In a mouse model 451 

of HD, both CSF and plasma levels of NfL were correlated with the degree of brain atrophy and the 452 

severity of disease, as determined by motor function and body weight193. Plasma NfL levels were also 453 

higher in individuals with HD than controls, increased with disease severity and predicted the degree 454 

of progressive brain atrophy191,194. In premanifest HD carriers, plasma NfL levels predicted the 455 

likelihood of clinical onset within the next three years and the rate of subsequent disease progression, 456 

as measured by cognitive, functional, and brain atrophy measures191,194. When compared with CSF NfL, 457 

plasma NfL was a better predictor of the rate of clinical progression, but CSF NfL was more strongly 458 

associated with brain volume measures than plasma NfL was. Rising concentrations of mHTT and NfL 459 

in biofluids seem to be the earliest detectable changes occurring in individuals with HD, and are 460 

followed by changes in brain imaging measures (for example, caudate atrophy), motor scores and then 461 

cognitive tests185. Plasma and CSF NfL were more strongly associated with clinical measures than CSF 462 

mHTT was, perhaps reflecting the direct link between brain atrophy and clinical manifestations of HD, 463 

or the complex contributions to the CSF mHTT assay signal, which is likely to be influenced by 464 

polyglutamine tract length, protein turnover and neuronal damage184. 465 

In cross-sectional studies, CSF levels of the microglia-derived inflammatory mediator YKL40, the 466 

immune-cell derived enzyme chitotriosidase, and the proinflammatory cytokine IL-6 were higher in 467 

HD carriers than in healthy controls192,195. CSF levels of YKL40 also increased with disease 468 

progression192,195. These findings suggest a role for microglial activation and inflammation in HD and 469 

support the use of these biomarkers to study relevant pathways.  470 

The concentration of tau was also robustly increased in the CSF of individuals with HD compared with 471 

healthy controls196, and tau aggregation was observed in post-mortem brain tissue from individuals with 472 

HD162,197-199. Increased phosphorylation and abnormal splicing of tau were observed in the striata of 473 

individuals with HD compared with controls200,201, and mHTT has been found to interact with tau in 474 

cell and animal models of the disease202. However, whether tau pathology is involved in HD 475 
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pathogenesis, is a general feature of neurodegeneration, or is an unrelated part of the aging process is 476 

unclear203. 477 

It will be some time before any biomarker attains official regulatory approval for use as a surrogate 478 

endpoint in studies of HD. However, biomarkers such as CSF and plasma NfL, and CSF mHTT, have 479 

been used to interpret the effects of HTT-lowering therapies and are included in ongoing and planned 480 

trials of similar agents204-206, which indicates that these markers are becoming increasingly useful and 481 

informative. 482 

[H1] Therapeutic opportunities 483 

Currently, treatments for HD focus on the relief of symptoms like chorea, dystonia, and psychiatric and 484 

behavioural disturbances207. No disease-modifying treatments have been found, despite some candidate 485 

drugs showing positive results in preclinical studies208. Drugs for which efficacy trials have failed to 486 

meet their endpoints include the dopamine stabiliser Pridopidine209, phosphodiesterase 10A 487 

inhibitors210-212, coenzyme Q10213,214, creatine215, cysteamine216, the sirtuin-1 inhibitor Selisistat217,218, 488 

hydroxyquinoline219, and the immunomodulators Sativex220 and Laquinimod221. Limited evidence 489 

supports the use of human foetal striatal tissue transplants or autologous stem cell transplants to treat 490 

individuals with HD222-224, but much more work is needed to determine the efficacy of these cell 491 

replacement therapies. The failure of so many efficacy trials might be owing, in part, to the insensitivity 492 

of the selected endpoints, such as functional capacity and motor score, to subtle changes in disease 493 

course. A more likely explanation is that, because the pathogenic events that occur downstream from 494 

mHTT form a complex web, pharmacological targeting of individual pathways is either too difficult to 495 

achieve cleanly, or is insufficient to modify disease course.  496 

Following these failed efficacy trials, the focus of research into HD therapeutics has shifted towards 497 

targeting the causative mutation at the RNA and DNA level225,226. HD is thought to be caused by toxic 498 

properties of mHTT5,227 and lowering expression of mHTT inhibits pathogenesis in cell and animal 499 

models of the disease186,226,228-231. However, loss of normal wild-type HTT might also contribute to 500 

pathogenesis13,232, and HTT-lowering therapies could exacerbate this potential haploinsufficiency. Htt 501 
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knockout is embryonically lethal in mice 11,12,233 and conditional deletion of Htt in the forebrain shortly 502 

after birth leads to a progressive degenerative neurological phenotype234. Evidence suggests that, in 503 

adult mice, HTT has several roles, including as a scaffold protein235,236, in intracellular trafficking237-241, 504 

transcriptional regulation242-244 and synaptic connectivity245-247. The phosphorylation of HTT in 505 

response to DNA damage suggests that the protein has a role in the DNA damage response248. Partial 506 

knockdown of HTT in adult animals is well tolerated in multiple species, including non-human 507 

primates225,249-252. Deletion of Htt in 4-month-old and 8-month-old mice caused no pathological or motor 508 

effects during 5 months of observation253. Individuals with heterozygous inactivation of HTT have no 509 

detectable symptoms254.  510 

The approaches used to reduce HTT expression, a process known as “HTT lowering”, include RNA 511 

interference (RNAi), ASOs and small molecule modulators of RNA processing (Fig. 3). The 512 

suppression of mHTT expression without affecting wild-type HTT expression, known as “allele-513 

selective HTT lowering”, by targeting the CAG tract255-257 or variants inherited along with the HTT 514 

CAG expansion258-260, is desirable, but challenging. Such allele-selective agents could have off-target 515 

effects, for example, at other CAG repeat-containing regions261. Therapies that target HTT CAG 516 

expansion-linked variants would only be effective in individuals with the linked variant, and as no one 517 

variant is present in all individuals with expanded HD alleles, at least three such therapies would be 518 

needed to treat up to 80% of individuals with HD262-264. The assigning, or ‘phasing’, of variants to the 519 

mutant and wild-type alleles is critical, otherwise there could be a risk of lowering the wild-type allele. 520 

Additionally, the need to target specific variants, as opposed to the whole gene or transcript, restricts 521 

the choice of sequences, which might limit the potency and selectivity of the resulting therapy225. 522 

Currently, both allele-selective and non-allele-selective methods are under development. 523 

[H2] RNA-targeting approaches 524 

[H3] RNAi 525 

RNAi is an endogenous cellular process that degrades mature, spliced mRNAs265. During this process, 526 

non-coding miRNAs form hairpin structures, and the antisense guide strand of these structures guides 527 

the RNA-induced silencing complex (RISC) to bind to a complimentary mRNA target, leading to 528 
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mRNA cleavage and translational repression266. Small interfering RNAs (siRNAs) are similar to 529 

miRNAs, but are derived from longer double-stranded RNA, do not form hairpins and are more target-530 

specific267. The main challenge facing the development of RNAi therapeutics for HD is introducing 531 

synthetic siRNAs and/or miRNAs into cells most vulnerable to the disease, such as the striatum. The 532 

lowering of HTT expression with siRNAs improved phenotype and neuropathology in mouse models 533 

of HD249,268-275.  534 

Delivering RNAi-inducing therapies into brain cells is challenging226. Most commonly, viral 535 

transduction of siRNAs or miRNAs is required for stable induction of RNAi and permanent suppression 536 

of HTT translation, although cellular entry has been improved with chemical modifications, liposomes 537 

and nanoparticles276. Recombinant adeno-associated viruses (AAV) and lentiviruses are non-538 

pathogenic, minimally immunogenic and cannot replicate277. AAVs provide stable expression of a 539 

construct in non-dividing cells from nuclear episomes, which are extra-chromosomal genetic material, 540 

as opposed to integrating into the host genome, as in the case of lentiviruses277. Viral vectors typically 541 

need to be injected into the target brain regions such as the striatum, as they cannot cross the blood–542 

brain barrier. However, this route of administration carries additional risk and tissue distribution might 543 

be limited278.Viruses that are designed to be administered by peripheral intravenous injection, cross the 544 

blood brain barrier, and transduce neurons and glia are currently under development, and include 545 

AAV9279 and AAV-PHP.B280,281. The challenges involved in developing RNAi-inducing therapies 546 

include the risks of off-target knockdown282, overwhelming the RNAi degradation pathway283,284, 547 

immunogenicity285 and the presence of virus-neutralising antibodies286. Regardless, a phase II trial of 548 

intracerebrally injected, AAV2-encapsulated nerve growth factor RNA in individuals with Alzheimer 549 

disease has shown that virally-delivered gene therapy can be safe and well-tolerated287. 550 

Patisiran, an siRNA designed to treat hereditary transthyretin (TTR)-mediated amyloidosis, is the first 551 

FDA approved therapy that uses lipid nanoparticle delivery288,289. The lipid nanoparticles containing the 552 

siRNA are administered intravenously and are delivered to the liver, which is the primary site of TTR 553 

production, although studies have shown that lipid nanoparticles can also convey RNAi therapy to the 554 

CNS290-293. 555 
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In January 2019, UniQure received FDA approval to begin the first trial of a HTT-lowering gene therapy 556 

in individuals with HD. The therapy being tested in this trial is AMT-130 (uniQure), an AAV5-557 

delivered, non-allele selective HTT miRNA294. In rodent models of HD, bilateral striatal injection of 558 

AMT-130 reduced striatal levels of HTT and improved neuropathology  compared with saline 559 

injection231. Similarly, in a minipig model of HD, AMT-130 produced a sustained, dose-dependent 560 

reduction in HTT in the striatum 3–6 months post-administration, as well as smaller reductions in other 561 

brain regions295. Spark Therapeutics and Voyager Therapeutics are developing AAV1-delivered non-562 

allele selective HTT miRNA therapies. Striatal injection of an miRNA developed by Spark Therapeutics 563 

improved neuropathology and motor phenotype in rodent models of HD compared with injection of an 564 

empty vector250, and safely lowered HTT in wild-type non-human primates251. Striatal injection of the 565 

miRNA developed by Voyager Therapeutics, VY-HTT01, lowered HTT levels in a mouse model of 566 

HD275, and in a preliminary study of combined putaminal and thalamic injection of VY-HTT01 in 567 

primates the treatment produced well-tolerated, sustained knockdown of mHTT RNA in the striatum, 568 

with a smaller reduction in cortex296,297. 569 

[H3] ASOs 570 

ASOs are synthetic, single-stranded, modified DNA molecules that bind to complimentary stretches of 571 

mRNA, thus inducing degradation of this mRNA by RNAse H298. ASOs act further upstream than RNAi 572 

approaches, binding pre-mRNA as opposed to mature transcripts. This pre-mRNA binding means that 573 

ASOs can bind intronic as well as exonic regions, providing more potential binding targets299. ASOs 574 

diffuse well through the CNS and are taken up by neuronal and glial cells, which means viral vectors 575 

are not needed for delivery. One benefit of not requiring viral vectors is that the effects of ASOs on 576 

gene expression are reversible and titratable228,299,300. However, ASOs are not suitable for oral 577 

administration and do not cross the blood brain barrier, so they must be injected intrathecally, 578 

intraventricularly or intraparanchymally, all of which result in limited spatial distribution of the ASO 579 

in the brain225,226,299. Following intrathecal delivery, ASO levels are highest in brain regions that are 580 

adjacent to the CSF spaces301, although in post-mortem studies in individuals treated with intrathecal 581 

Nusinersen (Spinraza; Biogen), an ASO that modulates splicing of survival motor neuron protein 2 582 
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(SMN2), the ASO was observed in both cortical and brainstem neurons and glia302. In a conditional 583 

mouse model of HD that expresses mHTT in either the striatum or cortex, lowering HTT expression in 584 

the cortex was more beneficial than striatal HTT lowering, but simultaneously lowering HTT levels in 585 

both brain regions resulted in the greatest reduction in motor and behavioural deficits and brain 586 

atrophy303. Intrathecal delivery of ASOs to treat HD would require repeated lumbar puncture, which 587 

could be avoided by the use of medical devices such as implantable pumps, or by chemical modification 588 

of the ASOs to enable peripheral administration and CNS penetration, although such compounds are 589 

still in development and are not yet ready for clinical translation299,300,304,305. 590 

ASOs have shown efficacy in other neurodegenerative diseases; Nusinersen, which is delivered by 591 

intrathecal boluses, dramatically improved motor function and survival in infants with spinal muscular 592 

atrophy type 1306 and has been approved by the FDA. IONIS pharmaceuticals have developed an 593 

intrathecally delivered ASO that targets superoxide dismutase 1 (SOD1) and was well tolerated by 594 

individuals with ALS-causing SOD1 mutations307. Furthermore, in conjunction with Biogen, IONIS 595 

have begun a phase I–IIa trial308 of a more potent SOD1 ASO, Toferson (IONIS-SOD1Rx
; Biogen/Ionis). 596 

In mouse models of HD, intraventricular infusion of a non-allele-selective HTT ASO reduced the 597 

expression both wild-type and mutant HTT mRNA and protein, leading to reduced transcriptional 598 

dysregulation, improved motor phenotype and increased survival compared with saline 599 

infusion186,228,230. These effects were particularly marked when the ASO was administered earlier in the 600 

disease course. Suppression of HTT mRNA and protein levels was sustained for 12 weeks after 601 

administration of the ASO and phenotypic improvement outlasted this knockdown by at least 4 weeks. 602 

In another study that used a mouse model of HD, an ASO-mediated ~50%–70% reduction in total HTT 603 

improved motor and cognitive deficits to a similar degree as a ~50%–70% reduction in mHTT only 309. 604 

Although this evidence supports ongoing clinical trials of non-allele selective HTT ASOs, allele-605 

selective strategies remain of interest as they are theoretically less likely to cause the long-term side 606 

effects that are associated with the reduction of the wild-type protein. Reductions of mHTT by 50% or 607 

more are consistently associated with phenotypic improvement in animal models of HD226. In wild-type 608 

non-human primates, a 21 day lumbar intrathecal infusion of a non-allele specific HTT ASO produced 609 
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a sustained reduction in HTT for at least 3 months, relative to vehicle-treated control animals, and was 610 

well-tolerated186,228. 611 

The results of a phase I–IIa trial of IONIS pharmaceutical’s non-allele selective ASO HTTRx 612 

(RG6042/tominersen; Ionis/Roche) were published in 2019186. In this trial, adults with early-stage HD 613 

received a total of four administrations of HTTRx, one administration every 4 weeks as an intrathecal 614 

bolus injection, via lumbar puncture. Of the 46 participants that were enrolled in the trial, 34 were 615 

randomly assigned to receive HTTRx and 12 were randomly assigned to receive placebo. The individuals 616 

receiving HTTRx were divided into five cohorts that each received a different dose of the treatment from 617 

10–120 mg. HTTRx was well-tolerated, with all participants completing the trial and only mild, lumbar 618 

puncture-related adverse effects, such as transient headache, being reported. Importantly, the groups of 619 

participants who received the ASO showed dose-dependent reductions in CSF mHTT concentration 620 

compared with the participants who received placebo (Fig. 4a), which is clear evidence of target 621 

engagement. This mHTT lowering began by the first timepoint, which was 28 days after the first 622 

administration, and the downward trend continued even between the final two administrations of the 623 

ASO, suggesting that mHTT levels would fall further with continued treatment. In the groups receiving 624 

the two highest HTTRx doses, CSF mHTT was 40-60% lower than in the group receiving placebo. This 625 

reduction exceeds the degree of mHTT lowering that produced clinical benefit in animal models 626 

186,228,309. Pharmacokinetic modelling predicted that this 40–60% reduction in CSF mHTT would 627 

correspond to a 55-85% reduction in mHTT in the cortex and a 20-50% reduction in mHTT in the 628 

caudate. Ventricular volume was larger in the groups of participants receiving the two highest doses of 629 

ASO than in the group of participants receiving placebo, but no concomitant decreases in whole-brain 630 

volume were observed. This increase in ventricular volume might reflect local parenchymal 631 

pseudoatrophy resulting from the resolution of inflammation or gliosis. 632 

At the final timepoint, which was between 16 and 20 weeks after the first administration, CSF NfL 633 

concentration also showed a small dose-dependent increase in the groups of participants receiving 634 

HTTRx compared with the group receiving placebo; this increase had resolved 7–27 months later186,185. 635 

After the HTTRx trial, all participants were enrolled in a 15-month open-label extension study in which 636 



25 
 

they received the 120 mg of the ASO every 4 or 8 weeks. In the extension study, CSF NfL 637 

concentrations increased between baseline and ~5 months, and then returned to baseline levels by ~9 638 

months despite continued ASO dosing310. These observations are as yet unexplained, and it remains to 639 

be seen whether NfL levels will fall below baseline (or below the expected level after disease 640 

progression is taken into account) with continued treatment. However, the resolution of this increase in 641 

CSF NfL concentration despite continued treatment argues against a long-term adverse effect of total 642 

huntingtin-lowering311. 643 

Although this first-in-human trial was not powered to detect clinical change, HTT lowering was 644 

associated with improvements in a novel clinical rating score, the composite Unified Huntington’s 645 

Disease Rating Scale (cUHDRS) (Fig. 4b). This rating scale combines four assessments: Total 646 

Functional Capacity, Total Motor Score (TMS), Symbol Digit Modalities Test (SDMT) and Stroop 647 

Word Reading. These assessments were selected, using data from large cohort studies, for their 648 

sensitivity to clinical progression, correlation with brain atrophy, and coverage of motor and cognitive 649 

domains312,313. Independent improvements in the TMS and SDMT components of the cUHDRS were 650 

also seen with HTT lowering. Roche is now performing a phase III trial206 to investigate the clinical 651 

efficacy of HTTRx, with cUHDRS and total functional capacity as primary endpoints. 652 

HTTRx targets mutant and wild-type HTT mRNA equally; however, Wave Life Sciences is currently 653 

performing phase Ib–IIa clinical trials of two allele-selective HTT ASOs that target SNPs inherited with 654 

the mutant allele 204,205,314. Biomarin have another allele-specific HTT ASO in preclinical development, 655 

that targets the expanded CAG repeat itself, although this strategy risks off-target knockdown of other 656 

CAG repeat-containing genes315. Other potential non-allele selective ASO strategies for HTT lowering 657 

include binding the AUG translation initiation site, or targeting intron-exon boundaries to modulate 658 

splicing299. 659 

Alternative toxic species of HTT present a challenge to some HTT lowering therapies. A HTT exon 1 660 

protein might not be affected by the RNAi and ASOs currently being trialled, but those binding exon 1 661 

mRNA itself should be effective. Repeat-associated non-ATG translation of HTT dipeptides might not 662 
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be fully prevented by RNAi, which acts on mature mRNA, but is expected to be inhibited by ASOs as 663 

they target pre-mRNA226,316. 664 

Whether total HTT lowering or allele-selective mHTT lowering is the optimal approach is unclear, but 665 

the results of ongoing clinical trials will hopefully provide answers. Encouragingly, an expression-666 

lowering variant in the HTT promoter was associated with a delay in disease onset of 9.3 years when 667 

on the expanded CAG allele, or 3.9 years when on the normal CAG allele, suggesting that total HTT 668 

lowering is beneficial in HD317. Total HTT lowering approaches have several advantages over allele-669 

specific approaches, as they permit the targeting of any HTT region and mean a single agent can be 670 

used in everyone with HD. Current total HTT lowering approaches aim for partial knockdown and are 671 

initiated in adulthood, thus avoiding potential adverse effects on development. 672 

[H3] Small molecule approaches 673 

Given the challenges of delivering RNAi and ASO therapies to the brain, small molecules that reduce 674 

HTT expression and can be taken orally are highly desirable. PTC Therapeutics have identified orally-675 

delivered compounds that can alter pre-mRNA splicing of HTT and reduce levels of the protein in the 676 

brains of HD mice318; however, owing to a lack of binding specificity, these compounds carry a higher 677 

risk of off-target effects than targeted RNAi and ASOs. A similar approach has been developed for the 678 

treatment of SMA; the orally available splicing modulator RG7800 (PTC Therapeutics/Roche) was 679 

used to alter SMN2 splicing to include exon 7, which is the only difference between SMN1 and SMN2 680 

proteins. Administration of RG7800 reduced the disease phenotype in a mouse model of SMA, relative 681 

to vehicle-treated controls, by compensating for the lack of SMN1319. A phase Ib–IIa trial of RG7800 682 

was terminated because ocular complications of the treatment were observed in non-human primates320. 683 

However, a phase I study of Risdiplam (RG7916; PTC Therapuetics/ Roche), which increases SMN 684 

protein levels, was completed in 2016321, and phase II trials are now underway 322-324. A different 685 

approach, being taken by Nuredis, is to design small molecles that bind to transcription elongation 686 

cofactors, which are required for transcription through expanded CAG repeats325,326. 687 
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[H2] DNA-targeting approaches 688 

DNA-targeting approaches aim to modify the HTT genetic sequence or its transcription, and typically 689 

combine a specific DNA-binding element with an effector, such as a nuclease. The three main DNA-690 

targeting approaches are zinc-finger nucleases (ZFNs)327, transcription activator-like effector nucleases 691 

(TALENs)328, and CRISPR-Cas9329. The ZFN DNA-binding element consists of an array of zinc-finger 692 

peptides, each of which binds a sequence of 3–5 nucleotides. Zinc-finger proteins (ZFPs) alone, or 693 

containing an active repressor, can selectively target the expanded CAG repeat and reduce its 694 

transcription257. In one study, several allele-specific ZFP transcriptional repressors were identified from 695 

a series of ZFPs designed to target CAG repeats in different frames 273. AAV-mediated delivery of one 696 

of these ZFPs selectively reduced mHTT expression in stem-cell derived neurons from individuals with 697 

HD. Furthermore, in three different mouse models of HD, striatal injection of the ZFP reduced the 698 

amount of neuropathology and improved some behavioural phenotypes, compared with injection of a 699 

GFP-only vector. This improvement was observed despite limited tissue distribution of the ZFP. Off-700 

target knockdown of several other CAG repeat-containing genes was observed, although this 701 

knockdown was not associated with toxicity in vivo. As an alternative to ZFPs with transcriptional 702 

repressors, genome editing with ZFNs could be used to disrupt or correct the CAG expansion330. 703 

TALENs contain a series of peptide repeats that each bind to a specific DNA nucleotide330. TALENs 704 

have the potential to be more efficient and specific than ZFNs, and have been used to shorten the 705 

expanded CAG repeat331 and suppress HTT transcription332 in vitro. However, TALENs require a 706 

thymine base to be present at the end of the target sequence, which means they have fewer potential 707 

targets than ZFNs330. 708 

CRISPR-Cas9 is a naturally occurring bacterial adaptive immune response to viruses329. A single-guide 709 

RNA (sgRNA) binds its complementary target sequence, such as the DNA of an invading viral 710 

pathogen; this binding requires the presence of a 3’ protospacer-adjacent motif sequence. Cas9 is a 711 

RNA-guided DNA nuclease that is recruited to the site of sgRNA binding and cleaves the DNA330. In 712 

cell and animal models of HD, CRISPR-Cas9 has been used to lower HTT levels via several different 713 
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effectors, for example blocking HTT transcription333, excising CAG repeats334, or selectively 714 

inactivating expanded CAG alleles by targeting associated SNPs259,260.  715 

These three DNA-targeting approaches could provide long-term treatment for HD from a single 716 

administration, and could prevent all of the pathogenic events that occur downstream of mHTT, 717 

including RNA-mediated toxicity, alternative splicing and repeat-associated non-ATG translation. 718 

Additionally, correction of the HTT mutation would eliminate intergenerational transmission of HD335. 719 

However, these approaches require viral delivery, reach only limited brain regions and are usually 720 

irreversible. In addition, DNA-targeting raises concerns about potential off-target effects elsewhere in 721 

the genome336, insertional mutagenesis and immunogenicity337. 722 

 [H1] Conclusions 723 

Substantial progress has been made in our understanding of the pathogenesis of HD, while 724 

developments in genetic technology and the availability of large cohorts of individuals with HD have 725 

led to the identification of new genetic modifiers of the disease. Somatic instability of the CAG repeat 726 

occurs in the tissues that are most vulnerable to HD pathology, particularly the striatum, and the degree 727 

of instability negatively correlates with age at disease onset. Genetic association studies have shown 728 

that DNA repair components, particularly those involved in mismatch repair, modify somatic instability 729 

and disease course. The process underlying this instability is likely to involve DNA loop-outs in the 730 

CAG tract, which are targeted by MutSβ, leading to attempted repair that might introduce incremental 731 

expansions. Reducing the levels of the pro-instability factors MSH3, PMS2 or LIG1, or inhibiting their 732 

function, is expected to reduce somatic instability and be well tolerated. Increased FAN1 expression 733 

decreases somatic instability and delays disease onset, suggesting its upregulation would be protective 734 

against HD. Excitingly, modulation of these DNA repair components can also reduce the instability of 735 

other pathogenic repeat sequences, suggesting that these potential therapeutic opportunities might also 736 

be effective in other repeat expansion diseases. mHTT sequesters components of the NPC in aggregates, 737 

disrupting nucleocytoplasmic transport. Modulation of nuclear transport pathways was protective in 738 

cell models of HD, which could open up new possibilities for therapeutic intervention. 739 



29 
 

CSF can be readily sampled throughout a clinical trial, and offers more direct access to CNS proteins 740 

than other biofluids. NfL is released into CSF, then into plasma, following neuronal damage. CSF and 741 

plasma concentrations of NfL strongly correlate with disease progression, and could be used as 742 

biomarkers and surrogate endpoints for clinical trials. mHTT is also likely to be released from damaged 743 

neurons, and an increase in CSF mHTT is the earliest detectable change in premanifest HD. 744 

After decades of disappointing clinical trial results, we finally seem to be seeing encouraging results 745 

from trials of rationally-designed disease-modifying therapies for HD. The first trial of an ASO has 746 

reported successful mHTT lowering, with good safety and tolerability186. A larger trial aimed at 747 

assessing the efficacy of this ASO is underway, as well as trials of mutant allele-specific ASOs204,205,314. 748 

These early trials are focussing on early manifest disease, looking to see whether we can preserve 749 

function. The next step will be to try and push back disease onset in premanifest HD carriers, although 750 

this approach presents its own challenges, and will require the development of a battery of clinical, 751 

biochemical and imaging biomarkers to demonstrate efficacy. Ultimately, the aim is to find treatments 752 

that offer lifelong, safe, sustained benefit from a single administration; this goal is still a long way off, 753 

but might eventually be achieved by gene editing strategies that remove CAG repeats, introduce 754 

interruptions or inactivate the mutant allele. 755 
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Key points 1668 

 Proteins involved in DNA repair, particularly mismatch repair, can modify the age of onset and 1669 

rate of progression of HD, likely by altering the rate of somatic expansion of CAG repeats in 1670 

the Huntingtin gene. 1671 

 The modulation of DNA repair factors, such as MSH3, FAN1, PMS2 or LIG1, has therapeutic 1672 

potential in HD and other repeat expansion diseases. 1673 

 Nucleocytoplasmic transport is disrupted in HD by sequestration of nuclear pore components 1674 

in Huntingtin (HTT) aggregates; modulation of nucleocytoplasmic transport is neuroprotective 1675 

and might provide a novel therapeutic opportunity. 1676 

 Changes in cerebrospinal fluid and serum biomarkers, including neurofilament light chain  and 1677 

mHTT, are amongst the earliest detectable changes in HD and can predict disease onset and 1678 

track progression. 1679 

 Intrathecally-delivered non-allele selective antisense oligonucleotides (ASOs) have 1680 

successfully lowered HTT concentration in the central nervous system of individuals with HD, 1681 

and trials of allele-specific ASOs are under way. 1682 

 Gene editing strategies for HTT lowering, including zinc finger proteins, transcription 1683 

activator-like effector nucleases and CRISPR-Cas9, are currently in preclinical development, 1684 

but need to be delivered via the injection of viral vectors, which can be challenging. 1685 

Fig. 1 | The potential roles of DNA repair Huntington disease modifiers in somatic instability. a | 1686 

DNA loop-outs form in the CAG·CTG repeat tract (red). Loop-outs of 1–15 bases are identified by 1687 

MutSβ, which is a heterodimer of the DNA mismatch repair proteins MSH2 and MSH3118. b. | The 1688 

MutSβ complex moves along DNA like a sliding clamp, inducing cleavage of the DNA by endonuclease 1689 

complexes such as MutLα (a heterodimer of MLH1 and PMS2) or Mutlγ (a heterodimer of MLH1 and 1690 

MLH3). FAN1, a DNA endonuclease and exonuclease, stabilises repeat tracts. The mechanism 1691 
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underlying this stabilisation by FAN1 is not yet clear, but it might involve sequestration of MutLα, 1692 

blocking MutSβ access to the loop out, or direct loop-out repair112. c. | The cut DNA strand is 1693 

resysnthesised by a DNA polymerase, and repair is completed by DNA ligase 1 (LIG1). This repair 1694 

process can induce incremental expansion, represented by the longer repeat tract in part c than in part 1695 

a. Increased expression of MSH3, MutLα, MutLγ and LIG1 promotes somatic instability and 1696 

accelerates onset of Huntington disease (HD), whereas FAN1 and the MutLβ heterodimer (MLH1 and 1697 

PMS1) protect against somatic instability and delay onset of HD.. 1698 

Fig. 2 | The nuclear transport cycle is disrupted by sequestration of RanGAP1 and nucleoporins 1699 

in mutant huntingtin aggregates. a | During nuclear import, cargos (purple) with nuclear localisation 1700 

signals (NLS) are released into the nucleoplasm when their karyopherin (transport factor or importin; 1701 

grey) interacts with Ran-GTP. Conversely, during export, cargoes with a nuclear export signal (NES), 1702 

are released into the cytoplasm when Ran-GTP is hydrolysed to Ran-GDP by RanGAP1, located on the 1703 

cytoplasmic filaments of the nuclear pore complex (blue). This establishes a gradient of Ran forms, 1704 

with more Ran-GTP in the nucleus and more Ran-GDP in the cytoplasm b | In Huntington disease 1705 

(HD), RanGAP1 and nucleoporins, including NUP62 and NUP88, are sequestered in mutant Huntingtin 1706 

(mHTT) aggregates. This sequestration results in a loss of the Ran gradient, and a failure of 1707 

nucleocytoplasmic transport. 1708 

Fig. 3 | Therapeutic methods for lowering huntingtin expression. The red sections of DNA, RNA, 1709 

and protein represent the pathogenic expanded CAG tract and its polyglutamine product. The orange 1710 

boxes are therapeutic approaches. ASO, antisense oligonucleotide; mHTT, mutant huntingtin; RISC, 1711 

RNA-induced silencing complex; RNAi, RNA interference; RNase, ribonuclease; TALEN, 1712 

transcription activator-like effector nuclease; ZFP, zinc-finger protein.  1713 

Fig. 4 | Phase I–IIa clinical trial of the HTTRx antisense oligonucleotide. HTTRx was administered 1714 

to adults with early-stage HD every 4 weeks as an intrathecal bolus, via lumbar puncture. Of 46 1715 

participants, 34 were randomly assigned to receive HTTRx and 12 received placebo. The individuals 1716 

receiving HTTRx were divided into five cohorts that each received a different dose of the ASO, from 1717 
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10–120 mg. a | Percentage change in the concentration of mutant Huntingtin (mHTT) in the 1718 

cerebrospinal fluid (CSF) of groups of participants who received one of five different doses of HTTRx 1719 

or placebo, from baseline (dotted line) to the last available time point, which was 28 days after the last 1720 

dose and 85–113 days after baseline measurement. Circles indicate individual participants, and 1721 

horizontal lines indicate group means; 95% confidence intervals are also shown for the groups of 1722 

participants receiving HTTRx. b | Relationship between CSF mHTT reduction at Study Day 85 and 1723 

composite Unified Huntington’s Disease Rating Scale (cUHDRS). The 95% confidence intervals have 1724 

not been adjusted for multiplicity and should be treated as exploratory. Direction of benefit is shown to 1725 

the left of the plot. Scale properties (range; clinically meaningful change) are -8-24; 2. Reproduced with 1726 

permission from Tabrizi, et al. 186. 1727 

Glossary: 1728 

Choreiform movements: Repetitive and rapid, jerky, involuntary movements. 1729 

RNA foci: Expanded RNA repeats that are retained in the nucleus, adopt unusual secondary structures, 1730 

sequester RNA binding proteins, and can become toxic to the cell. 1731 

Repeat-associated non-ATG translation: A repeat-length-dependent process that enables translation 1732 

initiation at noncanonical codons either within or adjacent to the expanded repeat tract. 1733 

Somatic instability: Expansion or contraction of repeat units within a repetitive DNA tract, the rate of 1734 

which is tissue specific. 1735 

microRNA: A small non-coding RNA molecule that functions in RNA silencing and post-1736 

transcriptional regulation of gene expression 1737 

Lagging strand: The strand of nascent DNA that is synthesised in the opposite direction to the direction 1738 

of the growing replication fork. 1739 

Loop-outs: Formed when one DNA strand is extruded from a CAG CTG repeat region; intrastrand links 1740 

then lead to the formation of a hairpin, with A-A or T-T base mispairing when the CAG or CTG strand 1741 

is extruded, respectively. 1742 
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