7,211 research outputs found
Clouds, photolysis and regional tropospheric ozone budgets.
We use a three-dimensional chemical transport model to examine the shortwave radiative effects of clouds on the tropospheric ozone budget. In addition to looking at changes in global concentrations as previous studies have done, we examine changes in ozone chemical production and loss caused by clouds and how these vary in different parts of the troposphere. On a global scale, we find that clouds have a modest effect on ozone chemistry, but on a regional scale their role is much more significant, with the size of the response dependent on the region. The largest averaged changes in chemical budgets (±10–14%) are found in the marine troposphere, where cloud optical depths are high. We demonstrate that cloud effects are small on average in the middle troposphere because this is a transition region between reduction and enhancement in photolysis rates. We show that increases in boundary layer ozone due to clouds are driven by large-scale changes in downward ozone transport from higher in the troposphere rather than by decreases in in-situ ozone chemical loss rates. Increases in upper tropospheric ozone are caused by higher production rates due to backscattering of radiation and consequent increases in photolysis rates, mainly J(NO2). The global radiative effect of clouds on isoprene, through decreases of OH in the lower troposphere, is stronger than on ozone. Tropospheric isoprene lifetime increases by 7% when taking clouds into account. We compare the importance of clouds in contributing to uncertainties in the global ozone budget with the role of other radiatively-important factors. The budget is most sensitive to the overhead ozone column, while surface albedo and clouds have smaller effects. However, uncertainty in representing the spatial distribution of clouds may lead to a large sensitivity of the ozone budget components on regional scales
Wigner crystals in two-dimensional transition-metal dichalcogenides: Spin physics and readout
Wigner crystals are prime candidates for the realization of regular electron
lattices under minimal requirements on external control and electronics.
However, several technical challenges have prevented their detailed
experimental investigation and applications to date. We propose an
implementation of two-dimensional electron lattices for quantum simulation of
Ising spin systems based on self-assembled Wigner crystals in transition-metal
dichalcogenides. We show that these semiconductors allow for minimally invasive
all-optical detection schemes of charge ordering and total spin. For incident
light with optimally chosen beam parameters and polarization, we predict a
strong dependence of the transmitted and reflected signals on the underlying
lattice periodicity, thus revealing the charge order inherent in Wigner
crystals. At the same time, the selection rules in transition-metal
dichalcogenides provide direct access to the spin degree of freedom via Faraday
rotation measurements.Comment: 15 pages, 12 figure
The longitudinal thickness of air-shower fronts
Linsely (1983) has proposed a technique for the detection and analysis of air showers at large distances from the shower axis based on a measurement of the shower front thickness and the assumption that this thickness is closely related to the core distance. Some of the problems involved with realizing such a technique were investigated, and some related observations are reported. The practical problems of how consistent the measurements of the shower front would be, how one would use the measurement, and how the rate of triggered events would depend on the minimum pulse width required are studied
Interannual variability of tropospheric composition:the influence of changes in emissions, meteorology and clouds
We have run a chemistry transport model (CTM) to systematically examine the drivers of interannual variability of tropospheric composition during 1996-2000. This period was characterised by anomalous meteorological conditions associated with the strong El Nino of 1997-1998 and intense wildfires, which produced a large amount of pollution. On a global scale, changing meteorology (winds, temperatures, humidity and clouds) is found to be the most important factor driving interannual variability of NO2 and ozone on the timescales considered. Changes in stratosphere-troposphere exchange, which are largely driven by meteorological variability, are found to play a particularly important role in driving ozone changes. The strong influence of emissions on NO2 and ozone interannual variability is largely confined to areas where intense biomass burning events occur. For CO, interannual variability is almost solely driven by emission changes, while for OH meteorology dominates, with the radiative influence of clouds being a very strong contributor. Through a simple attribution analysis for 1996-2000 we conclude that changing cloudiness drives 25% of the interannual variability of OH over Europe by affecting shortwave radiation. Over Indonesia this figure is as high as 71%. Changes in cloudiness contribute a small but non-negligible amount (up to 6%) to the interannual variability of ozone over Europe and Indonesia. This suggests that future assessments of trends in tropospheric oxidizing capacity should account for interannual variability in cloudiness, a factor neglected in many previous studies
Defect mediated melting and the breaking of quantum double symmetries
In this paper, we apply the method of breaking quantum double symmetries to
some cases of defect mediated melting. The formalism allows for a systematic
classification of possible defect condensates and the subsequent confinement
and/or liberation of other degrees of freedom. We also show that the breaking
of a double symmetry may well involve a (partial) restoration of an original
symmetry. A detailed analysis of a number of simple but representative examples
is given, where we focus on systems with global internal and external (space)
symmetries. We start by rephrasing some of the well known cases involving an
Abelian defect condensate, such as the Kosterlitz-Thouless transition and
one-dimensional melting, in our language. Then we proceed to the non-Abelian
case of a hexagonal crystal, where the hexatic phase is realized if
translational defects condense in a particular rotationally invariant state.
Other conceivable phases are also described in our framework.Comment: 10 pages, 4 figures, updated reference
An ensemble-based approach to climate reconstructions
Data assimilation is a promising approach to obtain climate reconstructions that are both consistent with observations of the past and with our understanding of the physics of the climate system as represented in the climate model used. Here, we investigate the use of ensemble square root filtering (EnSRF) – a technique used in weather forecasting – for climate reconstructions. We constrain an ensemble of 29 simulations from an atmosphere-only general circulation model (GCM) with 37 pseudo-proxy temperature time series. Assimilating spatially sparse information with low temporal resolution (semi-annual) improves the representation of not only temperature, but also other surface properties, such as precipitation and even upper air features such as the intensity of the northern stratospheric polar vortex or the strength of the northern subtropical jet. Given the sparsity of the assimilated information and the limited size of the ensemble used, a localisation procedure is crucial to reduce "overcorrection" of climate variables far away from the assimilated information
- …