288 research outputs found

    The complex molecular absorption line system at z=0.886 towards PKS1830-211

    Get PDF
    New millimeter wave observations of the molecular absorption line system in the gravitational lens to PKS1830-211 at z=0.88582 is presented. Self-calibrated interferometer data shows unequivocally that the previously detected absorption component is associated with the gravitationally lensed south-west image of the background source. A second absorption line of HCO+(2-1) at z=0.88582 is detected. This component is shifted in velocity by -147 km/s relative to the main absorption line, and is shown to be associated with the north-east image. These two absorption lines are used to constrain the mass of the lensing galaxy. Upper limits to absorption and emission lines from the possible absorption system at z=0.1927, seen in 21cm HI by Lovell et al, are reported.Comment: 16 pages, 7 figures, Accepted for publication in Ap

    Distribution of the molecular absorption in front of the quasar B0218+357

    Full text link
    The line of sight to the quasar B0218+357, one of the most studied lensed systems, intercepts a z=0.68 spiral galaxy, which splits its image into two main components A and B, separated by ca. 0.3'', and gives rise to molecular absorption. Although the main absorption component has been shown to arise in front of image A, it is not established whether some absorption from other velocity components is also occuring in front of image B. To tackle this question, we have observed the HCO+(2-1) absorption line during the commissioning phase of the new very extended configuration of the Plateau de Bure Interferometer, in order to trace the position of the absorption as a function of frequency. Visibility fitting of the self-calibrated data allowed us to achieve position accuracy between ~12 and 80 mas per velocity component. Our results clearly demonstrate that all the different velocity components of the HCO+(2-1) absorption arise in front of the south-west image A of the quasar. We estimate a flux ratio fA/fB = 4.2 (-1.0;+1.8 at 106 GHz.Comment: accepted for publication in A&A Letter special issue for the new extended configuration of the Plateau de Bure Interferomete

    Do the fundamental constants change with time ?

    Full text link
    Comparisons between the redshifts of spectral lines from cosmologically-distant galaxies can be used to probe temporal changes in low-energy fundamental constants like the fine structure constant and the proton-electron mass ratio. In this article, I review the results from, and the advantages and disadvantages of, the best techniques using this approach, before focussing on a new method, based on conjugate satellite OH lines, that appears to be less affected by systematic effects and hence holds much promise for the future.Comment: 15 pages, 3 figures. This is an electronic version of an invited review article for Mod. Phys. Lett. A, published as [Mod. Phys. Lett. A, Vol. 23, No. 32, 2008, pp. 2711] (copyright World Scientific Publishing Company; http://www.worldscientific.com/

    A search for high redshift molecular absorption lines toward millimetre-loud, optically faint quasars

    Full text link
    We describe initial results of a search for redshifted molecular absorption toward four millimetre-loud, optically faint quasars. A wide frequency bandwidth of up to 23 GHz per quasar was scanned using the Swedish-ESO Sub-millimetre Telescope at La Silla. Using a search list of commonly detected molecules, we obtained nearly complete redshift coverage up to z_abs=5. The sensitivity of our data is adequate to have revealed absorption systems with characteristics similar to those seen in the four known redshifted millimetre-band absorption systems, but none were found. Our frequency-scan technique nevertheless demonstrates the value of wide-band correlator instruments for searches such as these. We suggest that a somewhat larger sample of similar observations should lead to the discovery of new millimetre-band absorption systems.Comment: 8 pages, 7 EPS figures, 3 tables, accepted by MNRA

    Molecular gas and dust in NGC4550: A galaxy with two counterrotating stellar disks

    Get PDF
    We report the detection of 1 10^7 M_sun of molecular gas in the central region of the S0/E7 galaxy NGC4550, inferred from observations of CO(1-0) emission. Dust is detected in HST WFPC2 images and found to be asymmetrically distributed around the nucleus, only extending to a galactocentric distance of 7'' (600 pc). The shape of the CO emission profile is consistent with a molecular gas distribution following the dust. The distribution of the dust and gas in the center could be the result of an m=1 instability, which is the fastest growing unstable mode in counterrotating stellar disks. On a global scale the molecular gas in NGC4550 is stable against gravitational collapse but nevertheless star formation appears to be ongoing with normal star formation efficiency and gas consumption time scales. The stellar velocity dispersion in NGC4550 resembles that of elliptical galaxies. It is therefore likely that a hot X-ray emitting plasma limits the lifetime of the molecular gas, that must arise from a recent (<1 Gyr) accretion event

    Constraining the variation of fundamental constants using 18cm OH lines

    Full text link
    We describe a new technique to estimate variations in the fundamental constants using 18cm OH absorption lines. This has the advantage that all lines arise in the same species, allowing a clean comparison between the measured redshifts. In conjunction with one additional transition (for example, an HCO+^+ line), it is possible to simultaneously measure changes in α\alpha, gpg_p and yme/mpy \equiv m_e/m_p. At present, only the 1665 MHz and 1667 MHz lines have been detected at cosmological distances; we use these line redshifts in conjunction with those of HI 21cm and mm-wave molecular absorption in a gravitational lens at z0.68z\sim 0.68 to constrain changes in the above three parameters over the redshift range 0<z0.680 < z \lesssim 0.68. While the constraints are relatively weak (\lesssim 1 part in 10310^3), this is the first simultaneous constraint on the variation of all three parameters. We also demonstrate that either one (or more) of α\alpha, gpg_p and yy must vary with cosmological time or there must be systematic velocity offsets between the OH, HCO+^+ and HI absorbing clouds.Comment: 5 pages, no figures. Accepted for publication in Phys. Rev. Let
    corecore