95 research outputs found

    Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data

    Full text link
    Recurrent neural networks (RNNs) are nonlinear dynamical models commonly used in the machine learning and dynamical systems literature to represent complex dynamical or sequential relationships between variables. More recently, as deep learning models have become more common, RNNs have been used to forecast increasingly complicated systems. Dynamical spatio-temporal processes represent a class of complex systems that can potentially benefit from these types of models. Although the RNN literature is expansive and highly developed, uncertainty quantification is often ignored. Even when considered, the uncertainty is generally quantified without the use of a rigorous framework, such as a fully Bayesian setting. Here we attempt to quantify uncertainty in a more formal framework while maintaining the forecast accuracy that makes these models appealing, by presenting a Bayesian RNN model for nonlinear spatio-temporal forecasting. Additionally, we make simple modifications to the basic RNN to help accommodate the unique nature of nonlinear spatio-temporal data. The proposed model is applied to a Lorenz simulation and two real-world nonlinear spatio-temporal forecasting applications

    Hierarchical Bayesian Models for Predicting The Spread of Ecological Processes

    Get PDF
    This is the pre-print version of the article found in Ecology (http://www.esajournals.org/loi/ecol).There is increasing interest in predicting ecological processes. Methods to accomplish such predictions must account for uncertainties in observation, sampling, models, and parameters. Statistical methods for spatio-temporal processes are powerful, yet difficult to implement in complicated, high-dimensional settings. However, recent advances in hierarchical formulations for such processes can be utilized for ecological prediction. These formulations are able to account for the various sources of uncertainty, and can incorporate scientific judgment in a probabilistically consistent manner. In particular, analytical diffusion models can serve as motivation for the hierarchical model for invasive species. We demonstrate by example that such a framework can be utilized to predict spatially and temporally, the house finch relative population abundance over the eastern United States.This research has been supported by a grant from the U.S. Environmental Protection Agency's Science to Achieve Results (STAR) program, Assistance Agreement No. R827257-01-0

    Ensemble Kalman methods for high-dimensional hierarchical dynamic space-time models

    Full text link
    We propose a new class of filtering and smoothing methods for inference in high-dimensional, nonlinear, non-Gaussian, spatio-temporal state-space models. The main idea is to combine the ensemble Kalman filter and smoother, developed in the geophysics literature, with state-space algorithms from the statistics literature. Our algorithms address a variety of estimation scenarios, including on-line and off-line state and parameter estimation. We take a Bayesian perspective, for which the goal is to generate samples from the joint posterior distribution of states and parameters. The key benefit of our approach is the use of ensemble Kalman methods for dimension reduction, which allows inference for high-dimensional state vectors. We compare our methods to existing ones, including ensemble Kalman filters, particle filters, and particle MCMC. Using a real data example of cloud motion and data simulated under a number of nonlinear and non-Gaussian scenarios, we show that our approaches outperform these existing methods

    Bayesian Semiparametric Hierarchical Empirical Likelihood Spatial Models

    Full text link
    We introduce a general hierarchical Bayesian framework that incorporates a flexible nonparametric data model specification through the use of empirical likelihood methodology, which we term semiparametric hierarchical empirical likelihood (SHEL) models. Although general dependence structures can be readily accommodated, we focus on spatial modeling, a relatively underdeveloped area in the empirical likelihood literature. Importantly, the models we develop naturally accommodate spatial association on irregular lattices and irregularly spaced point-referenced data. We illustrate our proposed framework by means of a simulation study and through three real data examples. First, we develop a spatial Fay-Herriot model in the SHEL framework and apply it to the problem of small area estimation in the American Community Survey. Next, we illustrate the SHEL model in the context of areal data (on an irregular lattice) through the North Carolina sudden infant death syndrome (SIDS) dataset. Finally, we analyze a point-referenced dataset from the North American Breeding Bird survey that considers dove counts for the state of Missouri. In all cases, we demonstrate superior performance of our model, in terms of mean squared prediction error, over standard parametric analyses.Comment: 29 pages, 3 figue
    • …
    corecore