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Abstract: There is increasing interest in predicting ecological processes. Methods

to accomplish such predictions must account for uncertainties in observation, sampling,

models, and parameters. Statistical methods for spatio-temporal processes are powerful,

yet difficult to implement in complicated, high-dimensional settings. However, recent

advances in hierarchical formulations for such processes can be utilized for ecological

prediction. These formulations are able to account for the various sources of uncertainty,

and can incorporate scientific judgment in a probabilistically consistent manner. In par-

ticular, analytical diffusion models can serve as motivation for the hierarchical model for

invasive species. We demonstrate by example that such a framework can be utilized to

predict spatially and temporally, the house finch relative population abundance over the

eastern United States.
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INTRODUCTION

Ecological processes exhibit complicated behavior over an extensive range of spatial

and temporal scales of variability. To understand and eventually predict such compli-

cated processes, we must make use of available scientific insight, data, and theory, in a

modeling framework that honestly accounts for uncertainties in each. Indeed, with the

growing interest in ecological prediction, the development of alternative strategies that

can account for various uncertainties is imperative (Clark et al. 2001).

Although there is a rich history in ecology for developing analytical models that can

describe the essence of ecological processes over space and time, there has been less at-

tention to fitting such models to data, and even less attention to accounting for the uncer-

tainties present in the data, model, and parameters. The deterministic models that work

so well in describing theoretical aspects of the spatio-temporal behavior for many eco-

logical processes are fraught with uncertainty in application to prediction problems with

uncertain observational data. These uncertainties result from various approximations

and small-scale parameterizations, as well as uncertain initial and boundary conditions.

Furthermore, data are imprecise, subject to sampling variations, measurement errors and

biases, and concerns regarding the relevance of a particular dataset to the question at

hand. In the face of these complications, it is reasonable to view the prediction of com-

plex phenomena as statistical by nature. A consequence of this view is that we should not

expect to be able to predict individual organisms at all locations at all times, but rather

focus on prediction of the aggregate statistical properties (e.g., distributions) over rela-

tively large spatial and temporal scales (e.g., Levin et al. 1997). By utilizing a statistical

approach that accounts for uncertainties in such settings, one is able to obtain predictions

(in space and or time) and realistic measures of prediction error.

Traditionally, the generalized linear mixed model provides a flexible stochastic mod-

eling framework that can describe complicated processes (e.g., McCulloch and Searle

2001). However, it is often extremely difficult (if not impossible) to account realistically
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for the joint spatio-temporal dependence structure in the random effects term of such

models. This is especially true of dynamical processes, in which there are complicated

interactions across space and time. The difficulty arises from the fact that our current

state of knowledge concerning valid spatio-temporal covariance models for complicated

processes is extremely limited. Alternatively, one might model the complicated spatio-

temporal dependence by factoring the joint distribution of the ecological process into a

series of conditional models. This is the approach utilized, to a limited extent, in state-

space modeling of multivariate time-series models (e.g., West and Harrison 1997; Wikle

and Cressie 1999). Such models account for observation error at one stage, and then at

the next stage, factor the process, typically by assuming that if one knows the distribution

of the process at the current time given the previous time, all other earlier times provide

no additional information. This is known as a Markov assumption in time. The Markov-

based factorization is ideal for modeling dynamical processes since it specifies models

for the process at each time given the process in the past and some parameters that de-

scribe the dynamical evolution. If the parameters of the model are not known perfectly

(”parameter uncertainty”), then one must estimate them; this can be very difficult in large

complex systems. However, one can mitigate this difficulty by modeling the process pa-

rameters as a further series of conditional models. Such a hierarchical factorization is

very powerful in that relatively simple spatial and temporal dependence assigned to sub-

processes and parameters can lead to very complicated joint spatio-temporal dependence.

These models are known as fully hierarchical spatio-temporal dynamical models (Wikle,

Berliner, Cressie, 1998).

The question then is how to incorporate scientific insight into the hierarchical frame-

work. State-space modeling has a long history of including deterministic models explic-

itly in the dynamical framework. However, the model dynamics are usually considered

to be known without error. Although this is often reasonable in the engineering applica-

tions for which the methodology was developed, it is seldom the case in ecology that we

know the “true” dynamical model for a given process (“model uncertainty”). However,
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it is possible that inexact but useful scientific theory, such as suggested by deterministic

(e.g., partial differential equation, PDE) models, can be incorporated into the condi-

tional framework described above (e.g., Wikle et al. 2001). That is, the deterministic

model may reflect our prior scientific understanding of the dynamical propagation (often

analytical), but we doubt that the model, by itself, can adequately describe the true pro-

cess. Thus, we reconfigure the deterministic model into a stochastic framework, formally

making it part of our “prior” assumptions about the process; specifically, we use the de-

terministic model to motivate a series of conditional models. The important point is that

within the hierarchical framework, one accounts for the uncertainty associated with this

knowledge (the deterministic model), so that the final prediction of the process accounts

for uncertainties not only in data, but theory, model specification, and parameters.

The hierarchical spatio-temporal dynamic model methodology is illustrated with a

case study concerned with predicting the abundance of the house finch (Carpodacus

mexicanus) over the eastern half of the U.S. from 1966 through 2001, with data collected

during the North American Breeding Bird Survey (BBS; Robbins et al. 1986) from 1966

through 1999. Challenging aspects of this application include the presence of significant

observational error (Sauer et al. 1994), irregular spatial and temporal sampling, the dif-

fusive nature of the invasive process on landscape scales (over the eastern U.S.), and the

desire to quantify realistically the prediction errors associated with spatial and temporal

predictions of relative abundance.

Diffusion models have long been considered for describing the spread of invasive

organisms, and they have relevance to many invasive bird species (e.g., Okubo 1986; Veit

and Lewis 1996). This paper will describe how the hierarchical Bayesian approach can be

motivated by traditional diffusion PDEs and that such a framework can be used to model

the invasive expansion of the house finch on landscape scales. Key to this formulation

is the specification that the diffusion rate can vary with space. This methodology allows

for assessment of prediction uncertainty, both in space and time.

The paper begins with a section describing relevant background concerning the house
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finch, diffusion models in ecology, and Bayesian hierarchical modeling. A hierarchical

model for house finch abundance over space and time is then developed, followed by the

results from application to the BBS data. This is followed by a brief discussion.

BACKGROUND

House Finch Data from the BBS

The North American BBS is conducted each breeding season by volunteer observers

who count the number of various species of birds along specified routes (Robbins et al.

1986). The BBS sampling unit is a roadside route approximately 39.2 km in length.

An observer makes 50 stops over each route, during which birds are counted by sight

and sound for a period of 3 minutes. Over 4000 routes have been included in the North

American survey, but not all routes are available each year. As might be expected, due to

the subjectivity involved in counting birds by sight and sound, and the relative experience

and expertise of the volunteer observers, there is substantial observer error and bias in

the BBS survey (e.g., Sauer et al. 1994).

BBS data are often used to investigate spatial and temporal variation in relative abun-

dance (e.g., trends, Link and Sauer 1998). Spatial maps of relative abundance over time

are crucial for these purposes, yet traditional methods for producing such maps are some-

whatad hoc(e.g., inverse distance methods) and do not always account for the special

discrete, positive nature of the count data (e.g., Sauer et al. 1995) nor the sampling

and observation error. Corresponding prediction uncertainties for maps produced in this

fashion are not typically available. Recent studies have shown that Poisson-based hier-

archical spatial models can be used effectively to provide uncertainty estimates for BBS

maps (e.g., Royle et al. 2001, Wikle 2002). However, these studies have not focused on

the temporal aspect of the problem.

In this study, we are interested in the relative abundance of the house finch through

time. Figure 1 shows the location of the sampling route midpoints and observed counts
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over the eastern United States (U.S.) for the 1969, 1979, 1989, and 1999 BBS. The size

of the circle radius is proportional to the number of birds observed over each route and

sampled locations for which no House Finch were observed are indicated by a “+”. This

figure suggests that the population exhibits spatial spread with time that is characteristic

of an invasive species. Indeed, this species is native to the western U.S. and Mexico, and

the eastern population is a result of a 1940 release of caged birds in New York (Elliott

and Arbib 1953). Because the birds exhibit significant fecundity and their juveniles tend

to disperse over relatively long distances, the eastern house finch population expanded

to the west after the initial release. Although not shown here, the native west coast

population has also expanded eastward as the human population has expanded eastward

(and correspondingly, changed the environment/habitat). By the late 1990’s, the two

populations met in the central plains of North America.

Our interest is in predicting the spread of the eastern population over time at the land-

scape scale. Any such prediction must account for both irregular sampling, potential for

significant observation error, and uncertainty regarding our understanding of the spread

of the population with time.

Spatio-temporal Models in Ecology

There has been increasing interest in recent years in modeling the spatial distribution

of ecological processes over time. Although by no means exhaustive, these have tended

to focus on reaction-diffusion processes modeled via PDEs, integro-difference equations,

discrete-time contact models, and cellular automata (e.g., Hastings 1996). Many of these

can be shown to exhibit similar behavior and often the choice of one framework over

the other depends on whether one is considering discrete time and/or space. In some

cases the distinction is blurred with application to data-driven problems. For example,

non-linear PDEs often can only be solved numerically, requiring discretization and are

thus analogous to discrete time/space models in application.
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Historically, diffusion models have been considered for the house finch data (e.g.,

Okubo, 1986; Veit and Lewis 1996). Early studies found that the house finch popula-

tion range expanded slowly during the establishment phase followed by linear expansion

at a higher rate (Mundinger and Hope 1982; Okubo 1986). Our interest is on the rela-

tively large (landscape) scale spread of the house finch across the eastern U.S. from 1966

through the present. It is not obvious that the spread at such scales will be similar to that

found in earlier studies (e.g., Veit and Lewis 1996). In particular, over these scales we

should expect heterogeneity in the diffusion due in part to significant habitat variability.

Introduction to Bayesian Hierarchical Models

The essence of hierarchical modeling is based on the simple probability fact that the

joint distribution of a collection of random variables can be decomposed into a series of

conditional models. That is, ifA,B,C are random variables, then we can always write a

factorization such as[A,B,C] = [A|B,C][B|C][C]. (We use the notation[w1] to denote

the probability distribution ofw1; [w2|w1] represents the conditional distribution ofw2

giventhe random variablew1.) This simple formula is the crux of hierarchical thinking.

Imagine a complicated joint distribution that is difficult to specify. For example, in the

spatio-temporal context, the joint distribution describes the stochastic behavior of the

process at all spatial locations and all times. This isextremelydifficult (if not impossible)

to specify for complicated processes. Often, it is much easier to specify the distribution

of the conditional models. Thus, the product of a series of relatively simple conditional

models leads to a joint distribution that can be quite complicated. Although in some

cases it is possible to model this joint distribution directly using generalized likelihood

procedures (e.g., Lele et al. 1998), such approaches are not as flexible with regards to

accounting for uncertainty as the Bayesian methodology.

For modeling complicated processes in the presence of data, we can write the hierar-

chical model in three primary stages:
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Stage 1. Data Model:[data|process, data parameters]
Stage 2. Process Model:[process|process parameters]
Stage 3. Parameter Model:[data and process parameters].

Thus, the fundamental idea is to approach the complex problem by breaking it into sub-

problems. Although this idea has long been considered in statistics, its use for model-

ing complicated environmental and ecological processes is relatively new (e.g., Berliner

1996). The first stage is concerned with the observational process or “data model”, which

specifies the distribution of the data (say BBSobservationsof house finch relative abun-

dance)giventhe process of interest (e.g., thetruehouse finch abundance) and parameters

that describe the data model. The second stage then describes the process, conditional on

other process parameters. Perhaps this is some sort of reaction-diffusion process, with

parameters describing the rate of diffusion and the growth rate. Finally, the last stage

accounts for the uncertainty in the parameters, from both the data and process stages, by

assigning them distributions. For example, if we believe the diffusion rate to be a func-

tion of space, then we might model these parameters as a spatially correlated process

in the third stage. Each of these stages can have multiple sub-stages. For example, our

process (house finch abundance) might be modeled as a product of several physically-

motivated conditional distributions suggested by a state-space formulation. Similar de-

compositions are possible for the the parameter stage. For example, we might model a

spatially-varying diffusion coefficient conditional on habitat processes.

Ultimately, we are interested in the distribution of the process and parameters updated

by the data. We obtain this so-called ”posterior” distribution via Bayes’ Theorem:

[process, parameters|data] ∝ [data|process, parameters][process|parameters][parameters].
(1)

This formula serves as the basis for Bayesian hierarchical prediction. However, several

critical points remain. First, development of the parameterized component distributions

on the right-hand side of (1) is challenging, but not an unusual aspect of stochastic model-
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ing. Development of the parameter distribution (theprior distribution for the parameters)

has historically been the focus of objections to the Bayesian approach due to its implied

subjectiveness. Of course, the formulation of the data model and process model are quite

subjective as well, but typically have not generated the same concern. The point is that

the quantification of such subjective judgment is in fact the strength of the Bayesian ap-

proach, in that it provides a coherent probabilistic framework in which to incorporate

the judgment, scientific reasoning, and experience explicitly in the model. Finally, al-

though (1) looks simple in principle, it may be very difficult in practice to actually obtain

the posterior distribution. The complexity and high dimensionality of ecological models

prohibit the direct computation of the posterior in most cases. However, the recent de-

velopment of Markov chain Monte Carlo (MCMC) as a computational tool in Bayesian

statistics has made feasible implementations of hierarchical models in very complex set-

tings.

HIERARCHICAL MODELING OF HOUSE FINCH ABUNDANCE

Our goal is to develop a model that can predict house finch abundance on a regular

regular grid covering the eastern half of the U.S. The model must be able to predict both

at grid cells in which there were and were not observations during the years for which

we have BBS data, as well as forecast the abundance in the year immediately following

the most recent survey period (2000, in our case). The modeling approach is stochastic

and based largely on the Poisson modeling framework proposed by Diggle et al. (1998).

The key difference here is the inclusion of spatio-temporal dynamic effects motivated by

theoretical models of diffusion. We emphasize that the modeling framework is stochas-

tic and, although we are motivated by analytical models, we are not restricted to their

traditional implementation.

Data Model
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Let Zt(si) correspond to the observed count at timet, for t = 1, . . . , T and spatial

locationsi = (xi, yi), corresponding to the midpoint of a BBS route. For each timet

there arent observations denoted bysi for i = 1 . . . , nt. We let this count have a Poisson

distribution with meanλt(si),

Zt(si)|λt(si) ∼ Poisson(λt(si)). (2)

In this case, any two observationsZt(si) andZτ (sj) (e.g., BBS counts at two different

locations and different years) are assumed to be independentconditionalon their means

λt(si) andλτ (sj). Thus, dependence among the observations is induced by the random

spatio-temporal process (λ), which is modeled at the next stage.

Process Model

It is customary in Bayesian implementation of Poisson models to let the Poisson

intensity (mean)λ be distributed as a log-normal random variable (e.g., Diggle et al.

1998). In the spatio-temporal case, we assume the log of the intensity parameter follows

a normal distribution with a time-varying trend, spatio-temporal random effects, and an

uncorrelated noise term. Specifically,

log(λt(si)) = µt + k′itut + ηt(si), (3)

whereµt is a time-varying mean process that is constant for all spatial locations at a given

time, ut is ann × 1 vector representation of a griddedlatent (i.e., unobserved) spatio-

temporal dynamical process defined at grid locations that do not necessarily coincide

with data locations,kit is a knownn × 1 vector that maps the gridded processut to

observation locationsi, andηt(si) is a noise term that does not exhibit dependence across

space and time. These sub-processes are described in greater detail below. Note that we

have a great deal of flexibility in our choice ofkit. We can incorporate change of spatial
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scale information, spatial smoothing, or simply make it an incidence vector (a vector of

ones and zeros, with a one in thej-th position, relating the observation atsi to thej-th

element of the grid processut). As shown below, in our case each observation route is

assigned to the nearest grid location. This is rather simple, but sufficient for purposes of

illustration. For more complicated implementations ofkit see Wikle et al. (2001).

The temporal processµt is included to capture the time trend of the mean house finch

abundance. Our prior belief, based on previous studies (e.g., Okubo, 1986; Veit and

Lewis 1996), is that house finch abundance increases relatively slowly in early years,

followed by more rapid increase, and possibly a leveling off as saturation is reached (i.e.,

when the eastern and western populations meet in the central plains). There is also the

possibility that Allee dynamics are present (Veit and Lewis 1996). A convenient and

flexible model for such a process on the log-scale is a Gaussian random walk:

µt = µt−1 + εt, εt ∼ iid N(0, σ2
ε ). (4)

Theηt(si) process represents observer errors and small-scale spatio-temporal varia-

tion and is assumed to be independent across space and time. We specify a Gaussian dis-

tribution, ηt(si) ∼ iid N(0, σ2
η). The independence assumption may not be completely

valid in this case since some observers may take observations over multiple routes, in-

ducing dependence. However, detailed observer information that would be necessary to

account for this dependence is not readily available. The assumption that the small-scale

spatio-temporal variability is independent is also potentially suspect. It is assumed, how-

ever, that such an effect would be relatively minimal when compared to the landscape-

scale spatio-temporal variability of primary interest here.

The key process model component is the latent spatio-temporal processut. The

motivation for this process comes from analytical models for reaction-diffusion. Al-

though we could select a variety of representations for the reaction-diffusion component

motivation (e.g., see Wikle et al. 2001 and Wikle 2001 for examples using PDE and
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integrodifference-based models, respectively), we chose a PDE model because of his-

torical relevance to the house finch problem (e.g., Okubo 1986). Consider the general

diffusion PDE,

∂u

∂t
=

∂

∂x

(
δ(x, y)

∂u

∂x

)
+

∂

∂y

(
δ(x, y)

∂u

∂y

)
+ αu, (5)

whereut(x, y) is the spatio-temporal process at spatial locationr = (x, y) in two-

dimensional Euclidean space at timet, δ(x, y) is a spatially varying diffusion coefficient

andα is a growth coefficient. This is a generalization of Skellam’s (1951) classic diffu-

sion model plus Malthusian growth. The generalization is the specification of a spatially

varying diffusion parameter. This is important for landscape-scale processes since habi-

tat heterogeneity and physical barriers influence spatial spread. Studies of such models in

relatively simple circumstances have shown them to be important for realistic diffusion

(e.g., Shigesada et al. 1986). Although flexible, we do not expect this model to be the

“correct” model for describing the underlying latent diffusion of the house finch relative

abundance. For example, the Malthusian growth term is almost certainly not appropriate.

However, this parameterization is relatively simple (and thus facilitates implementation)

and in our case is included to account for “explosive” growthbeyondthat suggested by

the temporal trend termµt. No theoretical model will be correct when applied to real

data over highly diverse landscapes and long temporal periods. Thus, it is important to

recognize that this model is only the basis for a stochastic dynamic model. That is, it

is simply the motivation for our prior formulation and will ultimately be updated by the

data via Bayes’ Theorem. Furthermore, this prior model can be made quite flexible if

we allow the parametersδ(x, y) andα to be random to account for effects such as envi-

ronmental and demographic stochasticity. We emphasize that the diffusion is specified

on a latent (unobserved) process, specified on the log-scale. This formulation provides

additional flexibility in the stochastic model in terms of prediction.

Discretization of (5) using first-order forward differences in time and centered differ-
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ences in space yields:

ut(x, y) = ut−∆t(x, y)

[
1− 2δ(x, y)

(
∆t

∆2
x

+
∆t

∆2
y

)
+ ∆tα

]

+ ut−∆t(x−∆x, y)

[
∆t

∆2
x

{δ(x, y)− δ(x+ ∆x, y) + δ(x−∆x, y)}
]

+ ut−∆t(x+ ∆x, y)

[
∆t

∆2
x

{δ(x, y) + δ(x+ ∆x, y)− δ(x−∆x, y)}
]

+ ut−∆t(x, y + ∆y)

[
∆t

∆2
y

{δ(x, y) + δ(x, y + ∆y)− δ(x, y −∆y)}
]

+ ut−∆t(x, y −∆y)

[
∆t

∆2
y

{δ(x, y)− δ(x, y + ∆y) + δ(x, y −∆y)}
]

+ γt(x, y), (6)

where it is assumed that the discreteu-process is on a rectangular grid with spacing∆x

and∆y in the longitudinal and latitudinal directions, respectively, and with time spacing

∆t. Readers familiar with numerical approaches to the solution of PDEs might wonder

why we have not mentioned potential violation of the Courant-Friedrichs-Levy (CFL)

condition for computational stability. It is important to recognize that this is not an issue

with the Bayesian implementation so long as one has data to ”control” the model. That is,

unlike a pure numerical solution, we do not require long integrations of the PDE forward

in time, independent of data. In fact, we actually prefer the model to have the potential

to be unstable (to a reasonable extent) so that it can fit explosive growth over short time

spans, if the data warrant.

The error termγt(x, y) has been added to (6) to account for the uncertainties due

to the discretization as well as other model misspecifications. This term provides extra

flexibility in that it serves to induce stochastic forcing to the diffusion which can accom-

modate small pre-invasion colonies if the data warrant (at the low spatial resolution con-

sidered here). Thus, the value of theu-process at a given time is related to its past value

at that location and its four nearest neighbors, plus some stochastic noise. Such mod-
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els are known as space-time autoregressive (STAR) models (e.g., Pfeifer and Deutsch

1980). In high dimensions and/or with spatially varying parameters (as suggested here)

these models are very difficult to fit. However, as shown in Wikle et al. (1998), the

hierarchical perspective provides a reasonable mechanism by which to implement STAR

models in these settings. For example, in the present case, the time-lagged nearest neigh-

bor parameters that control the evolution of theu-process are functions ofδ andα, and

these are parameterized distributionally at a lower stage of the hierarchy. Thus, there is a

congruence between traditional spatio-temporal statistical modeling and an ecologically

motivated prior description of the underlying process.

For simplicity in presentation we can rewrite (6) in vector form as:

ut = H(δ, α)ut−1 + HB(δ)uBt−1 + γt, (7)

where again,ut corresponds to an arbitrary vectorization of the griddedu-process at

time t, H(δ, α) is a sparsen × n matrix with five non-zero diagonals corresponding to

the bracket coefficients in (6), hence its dependence onδ andα. Note that without loss

of generality, we have set∆t = 1, corresponding to 1 year in our application. Further-

more,uBt−1 is annB × 1 vector of boundary values for theu-process, andHB(δ) is an

n × nB sparse matrix with elements corresponding to the appropriate coefficients from

(6). Thus, the productHB(δ)uBt−1 is simply the specification of model edge effects. It

is possible, and indeed desirable in many cases, to model the boundary (or edge) process

uBt as a random process. One can show that this suggests a hierarchical approach to ac-

commodating boundary conditions (edge effects) in stochastic solutions to PDE models

(see Wikle et al. 2002). However, for simplicity, we assumeuBt is fixed (at zero) for all

time in the present application. As will be shown below, this is reasonable in the present

application since the prediction grid boundaries are either over water areas or over land

areas for which the house finch abundance is known to be relatively small. Furthermore,

we letγt ∼ iid N(0, σ2
γI) for t = 1, . . . , T . Note that in the probabilistic formulation
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we must also specify the distribution foru0, the initial condition, as described below.

Parameter Models

We specify the following distribution for the diffusion parameters,

δ|β, σ2
δ , θ ∼ N(Φβ, σ2

δR(θ)), (8)

whereδ is anN × 1 vectorization of theδ(x, y) process defined on then grid locations

andnB boundary locations (N = n + nB). TheN × p matrix Φ consists of known

spatially-referenced “covariates” withβ the correspondingp × 1 vector of “regression”

coefficients. Typically, the covariates may correspond to known factors that influence

the diffusion process such as habitat, human population, geographical barriers, climate,

etc. The correlation matrixR(θ) depends on some parameterθ that describes the spa-

tial dependence. In other words, this correlation matrix accounts for additional spatial

correlation in theδ-process. An alternative to specification of covariates is to specify a

general spatial random process forδ and examine the posterior to “discover” potential

important factors that affect the dispersion. We take this approach in the present study.

For sake of simplicity, we letΦ = 1, a vector of ones corresponding to an overall mean

for δ, and specify the correlation matrixR(θ) by assuming the spatial dependence of

the process can be described by an exponential correlation function,r(d) = exp(−d/θ)
wherer is the correlation,d is the distance between theδ process at two grid locations

andθ is a random spatial dependence parameter described below. The normal distribu-

tion assumption forδ could, in principle, allow diffusion coefficients to become negative.

Although this would not make sense from an ecological perspective, it is not necessarily

unreasonable in terms of the parameterization of the propagator matrixH. In the present

application, such concerns are mitigated by the fact that the posterior distribution ofδ

includes only positive values. One could, however, specify an alternative distribution

that guaranteed positive values, at the expense of minor inconvenience in the MCMC
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sampling algorithm.

We specify a simple normal distribution for the “growth” parameterα. That is, as-

sumeα ∼ N(α̃0, σ̃
2
α), with known mean and variance parametersα̃0 andσ̃2

α, respectively.

It would be reasonable to allow this parameter to vary with space as well. However, given

that most of the latent growth is modeled byµt in this example, and the fact that the dif-

fusion parameter is heterogeneous, it was decided that this additional spatial variability

was unnecessary. In fact, it is not cleara priori that the growth term is even needed in

the latent diffusion parameterization given the presence of the temporal trend termµt. In

this case, we will be interested in the posterior distribution which may suggest, on the

basis of data, if this prior assumption was reasonable.

Additional Parameter Distributions

To complete the model hierarchy we must specify distributions for the parameters

from the previous stages. For example, recognizing that the initial conditions foru andµ

are unknown, we account for that uncertainty by giving them the following distributions:

u0 ∼ N(ũ0, σ̃
2
0I), µ0 ∼ N(µ̃0, σ̃

2
µ). In addition, we letβ ∼ N(β̃, Σ̃β), σ2

η ∼ IG(q̃η, r̃η),

σ2
γ ∼ IG(q̃γ, r̃γ), σ2

d ∼ IG(q̃d, r̃d), σ2
ε ∼ IG(q̃ε, r̃ε), andθ ∼ U(θ̃L, θ̃U). Note that

IG(q, r) refers to an inverse gamma distribution with parametersq andr andU(a, b)

refers to a uniform distribution over the continuous range froma to b. Our choice for

these distributions were chosen for computational convenience. In principle, the param-

eters that make up these distributions (those with the “tilde”) can also be given distribu-

tions. However, in practice, we typically specify these “hyperparameters” and test the

model for sensitivity to our selections. For the most part, our choices for these hyperpa-

rameters are based on subjective scientific notions about the various parameters. In cases

where this knowledge is weak we make the prior specification “vague” by forcing the

variance to be relatively large. Our choice of hyperparameter specifications is shown in

Table 1.
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Hierarchical Model Summary

The Bayesian formulation of the hierarchical model can be summarized by the fol-

lowing posterior distribution:

[λ1, . . . ,λT ,u0, . . . ,uT , µ0, . . . , µT , δ, θ, α, σ
2
η, σ

2
γ, σ

2
ε ,β, σ

2
δ |Z1, . . . ,ZT ]

∝
{∏T

t=1

∏nt
i=1[Zt(si)|λt(si)][λt(s)i|µt,ut, σ2

η]
}{∏T

t=1[ut|δ, α,ut−1, σ
2
γ][µt|µt−1, σ

2
ε ]
}

× [u0][µ0][δ|β, σ2
δ , θ][θ][α][σ2

η][σ
2
γ][σ

2
ε ][β][σ2

δ ],

(9)

whereZt andλt arent × 1 vectorizations of thent observations and associated Poisson

means at timet, respectively. There certainly is no analytical solution to this posterior

(i.e., we cannot integrate the RHS of (9) to find the constant of proportionality). However,

as outlined in the Appendix, we can use MCMC methods to obtain samples from this

posterior distribution. For an overview of MCMC methodologies see Gilks et al. (1996)

and Robert and Casella (1999). For complicated spatio-temporal applications of these

methods, see Wikle et al. (1998), Berliner et al. (2000), and Wikle et al. (2001). For

applications to spatial modeling of BBS data, see Royle et al. (2001) and Wikle (2002).

Prediction

In addition to estimating model parameters (e.g.,µt and δ), we are interested in

predicting the “grid box average” house finch mean relative abundance at all spatial grid

locations for each time 1966-2000. Recall that the last year for which data were available

to us was 1999, so the 2000 prediction is a “forecast”. In addition to such predictions, we

seek measures of uncertainty (e.g., prediction variances) to quantify map precision. Thus

we obtain estimates of posterior means and corresponding posterior standard deviations

using MCMC methods. Specifically, we would like predictions of the Poisson mean

process at all grid locations free of observer effects. To obtain these predictions we

simply sample fromlog(λt) at each grid cell, and exponentiate those simulated values.

See the Appendix for details.
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MODELING RESULTS

The prediction grid is shown in Figure 2, and consists of a 28 by 18 grid approxi-

mately spaced at 1 degree by 1 degree intervals. The approximation occurs because an

equal area map projection is used to ensure all grid boxes cover the same area, and this

results in some distortion of the model grid in terms of latitude and longitude. Given that

our interest is in the landscape-scale distribution of relative abundance, this grid spac-

ing is adequate. If more detailed spatial features are of interest, then higher resolution

grids can be considered, at the expense of longer computation times. The conclusions

presented below are not overly sensitive to the grid spacing.

The MCMC simulation was run for 10,000 iterations beyond a reasonable “burn-

in” period (2000 iterations) and output was summarized. Table 2 shows the posterior

means and posterior standard deviations for the univariate parameters in the model. In

addition, Figure 3(a) shows posterior percentiles of theµt process from 1966 to 2000.

Recall that this variable accounts for the variation in the Poisson mean with time on the

log-scale. It is analogous to the average population change with time. From the time

series of the posterior median note the initial decrease in the late 1960’s to early 1970’s,

perhaps suggestive of demographic or environmental stochasticity, or possibly an Allee

effect (Veit and Lewis 1996). However, from the lower and upper 2.5 percentiles we note

that there is considerable uncertainty in theµt posterior during this time period. Thus,

given the BBS data, one can’t be certain that the process did in fact decrease during

this period. This distributional information is thus critical, and illustrates the strength

of the Bayesian hierarchical approach. Note, the initial decrease inµt is followed by a

linear increase (on the log-scale) until the mid 1990’s after which there was a decrease

and leveling off. This period corresponds to the timing of the coalescence of the east-

ern and western house finch populations. These results do appear “significant” relative

to the posterior percentiles. Figure 3(b) shows posterior percentiles ofexp(µt), clearly

suggesting the Poisson mean experiences exponential growth over time until saturation.
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The consideration of arbitrary nonlinear functions of parameters and the ease in which

their marginal posterior distributions can be obtained is a strength of the Bayesian hi-

erarchical approach. We can also examine marginal distributional results for univariate

parameters as shown by the posterior histograms ofσ2
η andα, in Figure 3(c) and 3(d),

respectively. There is significant observer/small-scale error in this case, which translates

to large variability of observations (observation error) on the Poisson scale. In addition,

the parameterα is significant in the posterior. Although this is the Malthusian growth

parameter in the classical diffusion model, it cannot be interpreted as such in the present

model since most of the growth of population over time (on the log scale) is accounted

for by theµt term. There is, however, a tradeoff between theα term and theµt term.

It is also instructive to examine spatial maps of the posterior mean for theδ process

(the diffusion coefficient). Figure 4 shows the posterior mean and standard deviation

maps for these parameters. Note, results for grid boxes that totally encompass water

(great lakes and Atlantic ocean) are not considered. These figures suggest that there is

indeed significant heterogeneity in the diffusion of the latent process, with the most in-

tense diffusion occurring in the midwest, where the axis of maximum diffusion extends

from eastern Missouri through western Pennsylvania. We emphasize that the estima-

tion of heterogeneous diffusion coefficients (and a measure of their uncertainty) is an

extremely useful by-product of the hierarchical formulation. Estimation of such effects

from traditional methodologies is extremely difficult.

A primary purpose of the modeling was to produce landscape-scale spatial maps of

the mean house finch relative abundance with time. Specifically, to predict both spatially

(at locations with no data) and temporally (into the future), with realistic measures of

prediction uncertainty. Figure 5 shows the posterior mean of the latent dynamic process

ut (left column), theλt-process (center column), and the posterior standard deviation for

theλt-process (right column) at five year intervals from 1975 through 2000, where the

year 2000 images are forecasts. Although one can get the impression of dynamic evolu-

tion in these images, it is more revealing to examine an animation of the yearly images
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(e.g., as a ”movie”). In that case, it is clear that the population ”oscillates” (periods of

increase and decrease) in the initial establishment period and expands rapidly during the

expansion period, followed by ”oscillation” as the population reaches saturation.

DISCUSSION

Ecological prediction is difficult. It is even more so in the presence of uncertainty.

Observations have errors and we seldom know the true underlying dynamical model

for a given phenomenon. For example, in the context of invasive species, there may

be demographic and environmental stochasticities, Allee dynamics, coalescing colonies,

jump diffusions, and heterogeneous rates of spread and growth. Theoretical models, al-

though able to include some of these effects in simplistic scenarios, generally do not

have the flexibility to accommodate thea priori uncertainty related to the dynamical

assumptions. On the other hand, purely stochastic models for such processes are often

over-parameterized and face significant problems when it comes to estimation. We have

demonstrated that one alternative, the Bayesian hierarchical framework, can be used to

build complicated spatio-temporal prediction models and quantify the associated uncer-

tainties.

A reasonable question might ask whether the methodology presented here is worth

the additional effort required for its implementation. First, for realistic estimates of pre-

diction error, one must account for uncertainties in data and model. Traditional ap-

proaches to this problem simply do not account for the uncertainty in both data and

model (if either). Certainly, any such method would be no simpler to implement than

the approach presented here. If we are to be serious about ecological prediction, then we

must provide realistic measures of prediction uncertainty.

Prediction aside, one might ask if the Bayesian hierarchical approach that accom-

modates uncertainties provides a richer understanding of the process. In the present

application, the answer is yes. First, as shown in Figure 3, we have for the first time
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some sense of the uncertainty in mean house finch relative abundance over time. This

has not been available from traditional analyses. Thus, although the posterior distribution

of mean relative abundance with time suggests that the population decreases in early pe-

riods, possibly indicating an Allee effect, there is sufficient uncertainty in these estimates

to question that interpretation.

In addition, Figure 4 shows that the diffusion rate is heterogeneous, and we have a

measure of our certainty in these estimates. Traditional approaches to this problem have

no (easy) way of estimating heterogeneous diffusion coefficients and providing estimates

of the certainty of those estimates. This information is critical to understanding the

spread of the house finch on landscape scales. For example, it is well-known that the

house finch is often associated closely with human habitation. As suggested by the coarse

U.S. population data shown in Figure 6, the axis of greatest diffusion in the Midwest is

correlated spatially with the axis of greatest population (also through the Midwest). The

uncertainty estimate forδ is especially important in this case since the BBS survey routes

are also correlated with population, adding potential sampling bias. In addition, there are

missing data, observational errors, and biases in selection of the prediction grid. Some of

these biases and uncertainties are accounted for in the model and reflected in the posterior

distribution of the diffusion parameter (and thus the posterior standard deviation map).

Obtaining such estimates of spatially-varying diffusion coefficients in the presence of

such uncertainties is difficult in traditional statistical models.

A number of issues arise when applying a Bayesian hierarchical model as demon-

strated here. In particular, how does one decide on the appropriate parameterizations?

Often, there is scientific insight (e.g., the reaction-diffusion motivation) for the most crit-

ical processes. One seeks to allow the models that are based on this insight to have the

flexibility to “adapt” to the data. Of course, there will always be distributions about which

one knows little. In this case, it is hoped that the data will provide direction through the

Bayesian updating, or that the parameters in question are not “critical”. Perhaps even

more disturbing to those beginning to explore these models is that there are multiple pa-
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rameterizations that might work equally well. For example, we could have modeledµt

as constant through time and allowed theα parameter to accommodate the exponential

growth (as in the traditional PDE framework). Although this might be a more pleasing

model for interpretation, it is not likely to predict any better than the chosen model. In

fact, it was found that the MCMC algorithm converged more rapidly whenµt was time-

varying, due most likely to the potential computational instabilities that can be induced

with largeα. A similar issue would be to model the abundance dynamics directly, rather

than as a latent Poisson mean process. It is difficult, however, to account for observa-

tional uncertainty if one is directly modeling the relative abundances. The generalized

linear mixed model framework at the heart of the hierarchical Poisson model can account

for observational effects through the extra Poisson variability term (η).

Finally, there is much to be done with the exploration of hierarchical spatio-temporal

models in ecology and other disciplines. These efforts, by their vary nature, will require

strong collaborations between applied mathematicians, statisticians, and subject matter

scientists.
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Table 1: Fixed Model Parameters

Parameter Prior Value
α̃0 0
σ̃2
α 0.4
ũ0 0
σ̃2

0 1
µ̃0 -6
σ̃2
µ 10
β̃ 0
Σ̃β 100× I
q̃η 1
r̃η 4
q̃γ .5
r̃γ 1
q̃ε .25
r̃ε 10
q̃δ .0005
r̃δ .05
θ̃L,θ̃U [1 , 400]
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Table 2: Posterior Mean and Standard Deviations for Univariate Parameters

Parameter Posterior Mean Posterior Standard Deviation
σ2
η 1.0569 0.0204
σ2
γ 0.2851 0.0129
σ2
δ 3.734× 10−5 2.725× 10−5

σ2
ε 0.1311 0.0349
α 0.011 0.0040
θ 144.5 21.3
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Figure 1: Location of BBS survey route and observed house finch count for 1969,

1979, 1989, and 1999. The radius of the circles are proportional to the observed count,

and survey routes with zero counts are indicated by a “+”.

Figure 2: Prediction grid; center of prediction grid box denoted by “+”.

Figure 3: Summaries of model parameters from the MCMC analysis. (a) Percentiles

of the marginal posterior distribution forµt; (b) Percentiles of the marginal posterior of

exp(µt); (c) Histogram of posterior samples forσ2
η; (d) Histogram of posterior samples

for α.

Figure 4: (a) Posterior mean of diffusion parameter,δ. (b) Posterior standard devia-

tion of diffusion parameter,δ.

Figure 5: Posterior maps every 5 years from 1975 through 2000. Left Column: Poste-

rior mean ofu. Center Column: Posterior mean ofλ. Right Column: Posterior standard

deviation ofλ.

Figure 6: Population counts from 2000 U.S. census.
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Figure 1: Location of BBS survey route and observed house finch count for 1969, 1979,
1989, and 1999. The radius of the circles are proportional to the observed count, and
survey routes with zero counts are indicated by a “+”.



Figure 2: Prediction grid; center of prediction grid box denoted by “+”.



Figure 3: Summaries of model parameters from the MCMC analysis. (a) Percentiles
of the marginal posterior distribution forµt; (b) Percentiles of the marginal posterior of
exp(µt); (c) Histogram of posterior samples forσ2

η; (d) Histogram of posterior samples
for α.
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Figure 4: (a) Posterior mean of diffusion parameter,δ. (b) Posterior standard deviation
of diffusion parameter,δ.
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Figure 5: Posterior maps every 5 years from 1975 through 2000. Left Column: Posterior
mean ofu. Center Column: Posterior mean ofλ. Right Column: Posterior standard
deviation ofλ.



Figure 6: Population counts from 2000 U.S. census.


