181 research outputs found

    Novel Assay of Metformin Levels in Patients With Type 2 Diabetes and Varying Levels of Renal Function: Clinical recommendations

    Get PDF
    AbstractObjective: To study trough levels of metformin in serum and its intra individual variation in patients using a newly developed assay. Research Design and Methods: Trough serum levels of metformin was measured once using Liquid Chromatography Tandem Mass Spectrometry (LcMSMS) in 137 type 2 diabetes patients with varying renal function (99 men) and followed repeatedly during two months in 20 patients (16 men) with estimated GFR (eGFR) below 60 ml/min/1.73 m(2) body surface. Results: Patients with eGFR >60, 30-60, and <30 ml/min/1.73 m(2) had a median trough metformin concentration of 4.5 mumol/l (range 0.1-20.7, n=107), 7.71 mumol/l (0.12-15.15, n=21), and 8.88 mumol/l (5.99-18.60, n=9), respectively. The median intraindividual overall coefficient of variation (CV) was 29.4 % (range 9,8-74,2). Conclusions: Determination of serum metformin with the LCMSMS technique is useful in patients on metformin treatment. Few patients had values over 20 mumol/L. Metformin measurement is less suitable for dose titration

    Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice.

    Get PDF
    Alpha-synuclein (α-Syn) aggregates are the main component of Lewy bodies, which are the characteristic pathological feature in Parkinson's disease (PD) brain. Evidence that α-Syn aggregation can be propagated between neurones has led to the suggestion that this mechanism is responsible for the stepwise progression of PD pathology. Decreasing α-Syn expression is predicted to attenuate this process and is thus an attractive approach to delay or halt PD progression. We have used α-Syn small interfering RNA (siRNA) to reduce total and aggregated α-Syn levels in mouse brains. To achieve widespread delivery of siRNAs to the brain we have peripherally injected modified exosomes expressing Ravies virus glycoprotein loaded with siRNA. Normal mice were analyzed 3 or 7 days after injection. To evaluate whether this approach can decrease α-Syn aggregates, we repeated the treatment using transgenic mice expressing the human phosphorylation-mimic S129D α-Syn, which exhibits aggregation. In normal mice we detected significantly reduced α-Syn messenger RNA (mRNA) and protein levels throughout the brain 3 and 7 days after treatment with RVG-exosomes loaded with siRNA to α-Syn. In S129D α-Syn transgenic mice we found a decreased α-Syn mRNA and protein levels throughout the brain 7 days after injection. This resulted in significant reductions in intraneuronal protein aggregates, including in dopaminergic neurones of the substantia nigra. This study highlights the therapeutic potential of RVG-exosome delivery of siRNA to delay and reverse brain α-Syn pathological conditions
    • 

    corecore