306 research outputs found

    Evaluating Composition Models for Verb Phrase Elliptical Sentence Embeddings

    Get PDF
    Ellipsis is a natural language phenomenon where part of a sentence is missing and its information must be recovered from its surrounding context, as in “Cats chase dogs and so do foxes.”. Formal semantics has different methods for resolving ellipsis and recovering the missing information, but the problem has not been considered for distributional semantics, where words have vector embeddings and combinations thereof provide embeddings for sentences. In elliptical sentences these combinations go beyond linear as copying of elided information is necessary. In this paper, we develop different models for embedding VP-elliptical sentences. We extend existing verb disambiguation and sentence similarity datasets to ones containing elliptical phrases and evaluate our models on these datasets for a variety of non-linear combinations and their linear counterparts. We compare results of these compositional models to state of the art holistic sentence encoders. Our results show that non-linear addition and a non-linear tensor-based composition outperform the naive non-compositional baselines and the linear models, and that sentence encoders perform well on sentence similarity, but not on verb disambiguation

    Classical Copying versus Quantum Entanglement in Natural Language: The Case of VP-ellipsis

    Get PDF
    In Proceedings CAPNS 2018, arXiv:1811.02701In Proceedings CAPNS 2018, arXiv:1811.0270

    Incremental Composition in Distributional Semantics

    Get PDF
    Despite the incremental nature of Dynamic Syntax (DS), the semantic grounding of it remains that of predicate logic, itself grounded in set theory, so is poorly suited to expressing the rampantly context-relative nature of word meaning, and related phenomena such as incremental judgements of similarity needed for the modelling of disambiguation. Here, we show how DS can be assigned a compositional distributional semantics which enables such judgements and makes it possible to incrementally disambiguate language constructs using vector space semantics. Building on a proposal in our previous work, we implement and evaluate our model on real data, showing that it outperforms a commonly used additive baseline. In conclusion, we argue that these results set the ground for an account of the non-determinism of lexical content, in which the nature of word meaning is its dependence on surrounding context for its construal

    DARIS : a low-frequency distributed aperture array for radio astronomy in space

    Get PDF
    The frequency band below 30 MHz is one of the last unexplored bands in radio astronomy. This band is well suited for studying the early cosmos at high hydrogen redshifts, the so-called dark ages, extragalactic surveys, (extra) solar planetary bursts, and high energy particle physics. In addition, space research such as space weather tomography, are also areas of scientific interest. \ud \ud Due to ionospheric scintillation (below 30MHz) and its opaqueness (below 15MHz), earth-bound radio astronomy observations in these bands are either severely limited in sensitivity and spatial resolution or entirely impossible. A radio telescope in space obviously would not be hampered by the Earth's ionosphere. In the past, several (limited) studies have been conducted to explore possibilities for such an array in space. These studies considered aperture synthesis arrays in space, at the back-side of the Moon, or a satellite constellation operating in a coherent mode. \u

    Aperture array development for future large radio telescopes

    Get PDF
    We present the design of a phased array system for future radio telescopes. This includes a system overview and recent results of the designed and implemented system, the Electronic Multi-Beam Radio Astronomy Concept (EMBRACE). Furthermore, simulations with a full-EM antenna simulator, combined with measurements on actual hardware, will provide information for the next design step, the Aperture Array Verification System (AAVS). With AAVS, we will prove design readiness of this novel array technology

    Constraining the epoch of reionization with the variance statistic: simulations of the LOFAR case

    Get PDF
    Several experiments are underway to detect the cosmic redshifted 21-cm signal from neutral hydrogen from the Epoch of Reionization (EoR). Due to their very low signal-to-noise ratio, these observations aim for a statistical detection of the signal by measuring its power spectrum. We investigate the extraction of the variance of the signal as a first step towards detecting and constraining the global history of the EoR. Signal variance is the integral of the signal's power spectrum, and it is expected to be measured with a high significance. We demonstrate this through results from a simulation and parameter estimation pipeline developed for the Low Frequency Array (LOFAR)-EoR experiment. We show that LOFAR should be able to detect the EoR in 600 hours of integration using the variance statistic. Additionally, the redshift (zrz_r) and duration (Δz\Delta z) of reionization can be constrained assuming a parametrization. We use an EoR simulation of zr=7.68z_r = 7.68 and Δz=0.43\Delta z = 0.43 to test the pipeline. We are able to detect the simulated signal with a significance of 4 standard deviations and extract the EoR parameters as zr=7.720.18+0.37z_r = 7.72^{+0.37}_{-0.18} and Δz=0.530.23+0.12\Delta z = 0.53^{+0.12}_{-0.23} in 600 hours, assuming that systematic errors can be adequately controlled. We further show that the significance of detection and constraints on EoR parameters can be improved by measuring the cross-variance of the signal by cross-correlating consecutive redshift bins.Comment: 13 pages, 14 figures, Accepted for publication in MNRA

    Optimized Trigger for Ultra-High-Energy Cosmic-Ray and Neutrino Observations with the Low Frequency Radio Array

    Get PDF
    When an ultra-high energy neutrino or cosmic ray strikes the Lunar surface a radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to detect these pulses. In this work we propose an efficient trigger implementation for LOFAR optimized for the observation of short radio pulses.Comment: Submitted to Nuclear Instruments and Methods in Physics Research Section

    Aperture Array Development for Future Large Radio Telescopes

    Get PDF
    Abstract-We present the design of a phased array system for future radio telescopes. This includes a system overview and recent results of the designed and implemented system, the Electronic Multi-Beam Radio Astronomy Concept (EMBRACE). Furthermore, simulations with a full wave EM antenna simulator, combined with measurements on actual hardware, will provide information for the next design step, the Aperture Array Verification System (AAVS). With AAVS, we will prove design readiness of this novel array technology. Index Terms-phased arrays, antenna arrays, array design, mutual coupling, radio astronomy, array signal processing
    corecore