117 research outputs found

    Bispecific antibody approach for EGFR-directed blockade of the CD47-SIRP alpha "don't eat me" immune checkpoint promotes neutrophil-mediated trogoptosis and enhances antigen cross-presentation

    Get PDF
    Cancer cells overexpress CD47 to subvert phagocytic elimination and evade immunogenic processing of cancer antigens. Moreover, CD47 overexpression inhibits the antibody-dependent cellular phagocytosis (ADCP) and cytotoxicity (ADCC) activities of therapeutic anticancer antibodies. Consequently, CD47-blocking antibodies have been developed to overcome the immunoevasive activities of cancer cell-expressed CD47. However, the wide-spread expression of CD47 on normal cells forms a massive "antigen sink" that potentially limits sufficient tumor accretion of these antibodies. Additionally, a generalized blockade of CD47-SIRP alpha interaction may ultimately lead to unintended cross-presentation of self-antigens potentially promoting autoimmunity. To address these issues, we constructed a bispecific antibody, designated bsAb CD47xEGFR-IgG1, that blocks cancer cell surface-expressed CD47 in an EGFR-directed manner. BsAb CD47xEGFR-IgG1 selectively induced phagocytic removal of EGFR(pos)/CD47(pos)cancer cells and endowed neutrophils with capacity to kill these cancer cells by trogoptosis; an alternate form of ADCC that disrupts the target cell membrane. Importantly, bsAb CD47xEGFR-IgG1 selectively enhanced phagocytosis and immunogenic processing of EGFR(pos)/CD47(pos)cancers cells ectopically expressing viral protein CMVpp65. In conclusion, bsAb CD47xEGFR-IgG1 may be useful to reduce on-target/off-tumor effects of CD47-blocking approaches, enhance cancer cell elimination by trogoptosis, and promote adaptive anticancer immune responses

    Cancer cells under immune attack acquire CD47-mediated adaptive immune resistance independent of the myeloid CD47-SIRP alpha axis

    Get PDF
    Cancer cells exploit CD47 overexpression to inhibit phagocytic elimination and neoantigen processing via the myeloid CD47-SIRPα axis and thereby indirectly evade adaptive T cell immunity. Here, we report on a hitherto unrecognized direct immunoinhibitory feature of cancer cell-expressed CD47. We uncovered that in response to IFNγ released during cognate T cell immune attack, cancer cells dynamically enhance CD47 cell surface expression, which coincides with acquiring adaptive immune resistance toward pro-apoptotic effector T cell mechanisms. Indeed, CRISPR/Cas9-mediated CD47-knockout rendered cancer cells more sensitive to cognate T cell immune attack. Subsequently, we developed a cancer-directed strategy to selectively overcome CD47-mediated adaptive immune resistance using bispecific antibody (bsAb) CD47xEGFR-IgG2s that was engineered to induce rapid and prolonged cancer cell surface displacement of CD47 by internalization. Treatment of CD47(pos) cancer cells with bsAb CD47xEGFR-IgG2s potently enhanced susceptibility to cognate CD8(pos) T cells. Targeting CD47-mediated adaptive immune resistance may open up new avenues in cancer immunotherapy

    A versatile pretargeting approach for tumour-selective delivery and activation of TNF superfamily members

    Get PDF
    TNFR superfamily (TNFRSF) members have important immunoregulatory functions and are of clear interest for cancer immunotherapy. Various TNFRSF agonists have been clinically evaluated, but have met with limited efficacy and/or toxicity. Recent insights indicate that 'first-generation' TNFRSF agonists lack efficacy as they do not effectively cross-link their corresponding receptor. Reversely, ubiquitous TNFRSF receptor(s) cross-linking by CD40 and Fas agonistic antibodies resulted in dose-limiting liver toxicity. To overcome these issues, we developed a novel pretargeting strategy exploiting recombinant fusion proteins in which a soluble form of TRAIL, FasL or CD40L is genetically fused to a high-affinity anti-fluorescein scFv antibody fragment (scFvFITC). Fusion proteins scFvFITC: sTRAIL and scFvFITC: sFasL induced potent target antigen-restricted apoptosis in a panel of cancer lines and in primary patient-derived cancer cells, but only when pretargeted with a relevant FITC-labelled antitumour antibody. In a similar pretargeting setting, fusion protein scFvFITC: sCD40L promoted tumour-directed maturation of immature monocyte-derived dendritic cells (iDCs). This novel tumour-selective pretargeting approach may be used to improve efficacy and/or reduce possible off-target toxicity of TNFSF ligands for cancer immunotherapy

    CD47, a multi-facetted target for cancer immunotherapy

    Get PDF
    CD47 is a ubiquitously expressed immunoregulatory protein best known for its so-called 'don't eat me' function that prevents phagocytic removal of healthy cells by the immune system. Many types of cancer present high levels of this don't eat me signal on their surface, thereby disrupting anti-cancer immune responses. Based on this observation, CD47 has become a prominent target in the field of cancer immunotherapy. Indeed, pre-clinical studies have shown therapeutic benefit of anti-CD47 antibodies in solid cancers and most notably B-cell malignancies. However, CD47 is also involved in various other important cellular processes, such as angiogenesis, cancer cell death and regulation of T-cell immunity, which can be modulated via interactions with thrombospondin-1. The therapeutic outcome of CD47-targeted immunotherapy therefore relies on the combined effects of all these processes. Here we will review the various physiological functions of CD47 and their implications in cancer biology. Further, we will review ongoing efforts and provide perspectives for exploiting CD47 as an immunotherapeutic target in cancer

    Melanoma-associated Chondroitin Sulfate Proteoglycan (MCSP)-targeted delivery of soluble TRAIL potently inhibits melanoma outgrowth in vitro and in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advanced melanoma is characterized by a pronounced resistance to therapy leading to a limited patient survival of ~6 - 9 months. Here, we report on a novel bifunctional therapeutic fusion protein, designated anti-MCSP:TRAIL, that is comprised of a melanoma-associated chondroitin sulfate proteoglycan (MCSP)-specific antibody fragment (scFv) fused to soluble human TRAIL. MCSP is a well-established target for melanoma immunotherapy and has recently been shown to provide important tumorigenic signals to melanoma cells. TRAIL is a highly promising tumoricidal cytokine with no or minimal toxicity towards normal cells. Anti-MCSP:TRAIL was designed to <b>1</b>. selectively accrete at the cell surface of MCSP-positive melanoma cells and inhibit MCSP tumorigenic signaling and <b>2</b>. activate apoptotic TRAIL-signaling.</p> <p>Results</p> <p>Treatment of a panel of MCSP-positive melanoma cell lines with anti-MCSP:TRAIL induced TRAIL-mediated apoptotic cell death within 16 h. Of note, treatment with anti-MCSP:sTRAIL was also characterized by a rapid dephosphorylation of key proteins, such as FAK, implicated in MCSP-mediated malignant behavior. Importantly, anti-MCSP:TRAIL treatment already inhibited anchorage-independent growth by 50% at low picomolar concentrations, whereas > 100 fold higher concentrations of non-targeted TRAIL failed to reduce colony formation. Daily i.v. treatment with a low dose of anti-MCSP:TRAIL (0.14 mg/kg) resulted in a significant growth retardation of established A375 M xenografts. Anti-MCSP:TRAIL activity was further synergized by co-treatment with rimcazole, a σ-ligand currently in clinical trials for the treatment of various cancers.</p> <p>Conclusions</p> <p>Anti-MCSP:TRAIL has promising pre-clinical anti-melanoma activity that appears to result from combined inhibition of tumorigenic MCSP-signaling and concordant activation of TRAIL-apoptotic signaling. Anti-MCSP:TRAIL alone, or in combination with rimcazole, may be of potential value for the treatment of malignant melanoma.</p

    Frequency of Th17 CD20+ cells in the peripheral blood of rheumatoid arthritis patients is higher compared to healthy subjects

    Get PDF
    addresses: Peninsula Medical School, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK. [email protected]: PMCID: PMC3334661types: Journal Article; Research Support, Non-U.S. Gov'tRheumatoid arthritis (RA) is considered a T cell driven autoimmune disease, therefore, the ability of B cell depleting biologics, e.g., anti-CD20 antibodies, to alleviate RA is unclear. This study examined the proportions of IL-17-secreting lymphocytes in the blood of healthy subjects and RA patients and determined if Th17 cells belong to a CD20+ subset of T cells

    Antigen-specific active immunotherapy for ovarian cancer

    Get PDF
    BACKGROUND: This is the second update of the review first published in the Cochrane Library (2010, Issue 2) and later updated (2014, Issue 9).Despite advances in chemotherapy, the prognosis of ovarian cancer remains poor. Antigen-specific active immunotherapy aims to induce tumour antigen-specific anti-tumour immune responses as an alternative treatment for ovarian cancer. OBJECTIVES: Primary objective• To assess the clinical efficacy of antigen-specific active immunotherapy for the treatment of ovarian cancer as evaluated by tumour response measured by Response Evaluation Criteria In Solid Tumors (RECIST) and/or cancer antigen (CA)-125 levels, response to post-immunotherapy treatment, and survival differences◦ In addition, we recorded the numbers of observed antigen-specific humoral and cellular responsesSecondary objective• To establish which combinations of immunotherapeutic strategies with tumour antigens provide the best immunological and clinical results SEARCH METHODS: For the previous version of this review, we performed a systematic search of the Cochrane Central Register of Controlled Trials (CENTRAL; 2009, Issue 3), in the Cochrane Library, the Cochrane Gynaecological Cancer Group Specialised Register, MEDLINE and Embase databases, and clinicaltrials.gov (1966 to July 2009). We also conducted handsearches of the proceedings of relevant annual meetings (1996 to July 2009).For the first update of this review, we extended the searches to October 2013, and for this update, we extended the searches to July 2017. SELECTION CRITERIA: We searched for randomised controlled trials (RCTs), as well as non-randomised studies (NRSs), that included participants with epithelial ovarian cancer, irrespective of disease stage, who were treated with antigen-specific active immunotherapy, irrespective of type of vaccine, antigen used, adjuvant used, route of vaccination, treatment schedule, and reported clinical or immunological outcomes. DATA COLLECTION AND ANALYSIS: Two reviews authors independently extracted the data. We evaluated the risk of bias for RCTs according to standard methodological procedures expected by Cochrane, and for NRSs by using a selection of quality domains deemed best applicable to the NRS. MAIN RESULTS: We included 67 studies (representing 3632 women with epithelial ovarian cancer). The most striking observations of this review address the lack of uniformity in conduct and reporting of early-phase immunotherapy studies. Response definitions show substantial variation between trials, which makes comparison of trial results unreliable. Information on adverse events is frequently limited. Furthermore, reports of both RCTs and NRSs frequently lack the relevant information necessary for risk of bias assessment. Therefore, we cannot rule out serious biases in most of the included trials. However, selection, attrition, and selective reporting biases are likely to have affected the studies included in this review. GRADE ratings were high only for survival; for other primary outcomes, GRADE ratings were very low.The largest body of evidence is currently available for CA-125-targeted antibody therapy (17 studies, 2347 participants; very low-certainty evidence). Non-randomised studies of CA-125-targeted antibody therapy suggest improved survival among humoral and/or cellular responders, with only moderate adverse events. However, four large randomised placebo-controlled trials did not show any clinical benefit, despite induction of immune responses in approximately 60% of participants. Time to relapse with CA-125 monoclonal antibody versus placebo, respectively, ranged from 10.3 to 18.9 months versus 10.3 to 13 months (six RCTs, 1882 participants; high-certainty evidence). Only one RCT provided data on overall survival, reporting rates of 80% in both treatment and placebo groups (three RCTs, 1062 participants; high-certainty evidence). Other small studies targeting many different tumour antigens have presented promising immunological results. As these strategies have not yet been tested in RCTs, no reliable inferences about clinical efficacy can be made. Given the promising immunological results and the limited side effects and toxicity reported, exploration of clinical efficacy in large well-designed RCTs may be worthwhile. AUTHORS' CONCLUSIONS: We conclude that despite promising immunological responses, no clinically effective antigen-specific active immunotherapy is yet available for ovarian cancer. Results should be interpreted cautiously, as review authors found a significant dearth of relevant information for assessment of risk of bias in both RCTs and NRSs

    CSPG4:A Target for Selective Delivery of Human Cytolytic Fusion Proteins and TRAIL

    Get PDF
    Chondroitin-sulfate proteoglycan 4 (CSPG4) is a transmembrane glycoprotein overexpressed on malignant cells in several cancer types with only limited expression on normal cells. CSPG4 is implicated in several signaling pathways believed to drive cancer progression, particularly proliferation, motility and metastatic spread. Expression may serve as a prognostic marker for survival and risk of relapse in treatment-resistant malignancies including melanoma, triple negative breast cancer, rhabdomyosarcoma and acute lymphoblastic leukemia. This tumor-associated overexpression of CSPG4 points towards a highly promising therapeutic target for antibody-guided cancer therapy. Monoclonal αCSPG4 antibodies have been shown to inhibit cancer progression by blocking ligand access to the CSPG4 extracellular binding sites. Moreover, CSPG4-directed antibody conjugates have been shown to be selectively internalized by CSPG4-expressing cancer cells via endocytosis. CSPG4-directed immunotherapy may be approached in several ways, including: (1) antibody-based fusion proteins for the selective delivery of a pro-apoptotic factors such as tumor necrosis factor-related apoptosis-inducing ligand to agonistic death receptors 4 and 5 on the cell surface; and (2) CSPG4-specific immunotoxins which bind selectively to diseased cells expressing CSPG4, are internalized by them and induce arrest of biosynthesis, closely followed by initiation of apoptotic signaling. Here we review various methods of exploiting tumor-associated CSPG4 expression to improve targeted cancer therapy
    corecore