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Abstract 
CD47 is a ubiquitously expressed immunoregulatory protein best known for its so-called 'don't eat me' function 

that prevents phagocytic removal of healthy cells by the immune system. Many types of cancer present high levels 

of this don't eat me signal on their surface, thereby disrupting anti-cancer immune responses. Based on this 

observation, CD47 has become a prominent target in the field of cancer immunotherapy. Indeed, pre-clinical 

studies have shown therapeutic benefit of anti-CD47 antibodies in solid cancers and most notably B-cell 

malignancies. However, CD47 is also involved in various other important cellular processes, such as angiogenesis, 

cancer cell death and regulation of T-cell immunity, which can be modulated via interactions with 

thrombospondin-1. The therapeutic outcome of CD47-targeted immunotherapy therefore relies on the combined 

effects of all these processes. Here we will review the various physiological functions of CD47 and their 

implications in cancer biology. Further, we will review ongoing efforts and provide perspectives for exploiting 

CD47 as an immunotherapeutic target in cancer. 

Keywords: CD47; Signal regulatory protein α (SIRP α); Thrombospondin-1 (TSP-1); cancer (immune) therapy; 

phagocytosis; angiogenesis. 

Introduction 
CD47 is a 50 kDa transmembrane immunoglobulin 

protein comprising a heavily glycosylated N-

terminal IgV domain followed by a pentaspanin 

transmembrane domain and a short cytoplasmic tail 

(Lindberg et al., 1993). CD47 is best known for its 

pivotal role in preventing phagocytic removal of 

healthy cells by binding to phagocyte-expressed 

signal regulatory protein alpha (SIRPα). SIRPα is an 

inhibitory receptor that, once triggered, suppresses 

phagocytosis. This CD47/SIRPα axis is an important 

homeostatic mechanism preventing removal of 

healthy normal cells that express CD47. Reversely, 

down-regulation of CD47 on damaged, aged and 

superfluous cells ensures their timely removal. This 

function of CD47 in cellular turn-over was first 

established in red blood cells almost 2 decades ago 

and is now held to be a general homeostatic system 

(Oldenborg et al., 2000). Both solid and hematologic 

malignancies overexpress CD47 and, thereby, 

essentially hijack this homeostatic system to evade 

phagocytic clearance (Jaiswal et al., 2009; Chao et 

al., 2011b; Jaiswal et al., 2009; Chao et al., 2010a; 

Chao et al., 2011a; Zhao et al., 2011; Willingham et 

al., 2012; Rendtlew Danielsen et al., 2007; Edris et 

al., 2012). Therapeutic interventions that block 

CD47-SIRPα interaction have been found to 

promote phagocytic elimination of such CD47 

overexpressing tumor cells and are poised for 

clinical evaluation (Chao et al., 2010a; Tseng et al., 

2013; Theocharides et al., 2012; Majeti et al., 2009; 

http://atlasgeneticsoncology.org/Genes/THBS1ID42548ch15q15.html
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Chao et al., 2011b; Chao et al., 2011a; Willingham 

et al., 2012; Edris et al., 2012). CD47 also impacts 

on various other biological processes via binding to 

alternate receptors or due to signaling through its 

intracellular cytoplasmic domain. For instance, 

interaction of CD47 with thrombospondin-1 (TSP-1) 

or vascular endothelial growth factor receptor 2 

(VEGFR2) inhibits angiogenesis and thereby limits 

tumor growth. Further, cross-linking of CD47 

expressed on tumor cells via e.g. TSP-1 can directly 

induce cell death in breast cancer cells and leukemia 

(Mateo et al., 1999; Saumet et al., 2005; Manna and 

Frazier, 2004). Finally, CD47 expressed on immune 

cells can both positively and negatively regulates 

immunity, i.e. innate immune cells such as 

neutrophils, as well as adaptive immunity, i.e. DC 

maturation and T-cell activity. Thus, CD47 has a 

complex and multifactorial role in anti-cancer 

immunity and cancer biology (figure 1). 

Correspondingly, the outcome of therapeutic 

targeting of CD47 will depend on expression, 

binding affinity and relative levels of its diverse 

ligands. In this review, we will first review 

expression patterns of CD47 and its binding partners 

in normal tissue and cancer. Second, we will discuss 

the multi-facetted biological effect of CD47 and its 

ligands in cancer and immunity. Further, we will 

discuss the current state-of-the-art as well as identify 

challenges and opportunities CD47 as target in 

cancer (immuno)therapy. 

Tissue distribution and 
regulation of CD47 and binding 
partners 
Expression of CD47 in normal cells and cancer 

CD47 is expressed on almost all normal human cells, 

as evaluated by mRNA expression and 

immunohistochemical staining, and occurs in four 

highly conserved isoforms that differ only in the 

length of their cytoplasmic domain, ranging from 3 

to 36 amino acids (Reinhold et al., 1995). These 

isoforms arise due to alternative splicing of the 

CD47 mRNA. Splice form 2 contains the second 

largest cytoplasmic tail and is most abundantly 

expressed, whereas neuronal tissue almost 

exclusively express splice form 4 (Reinhold et al., 

1995). Of note, the functional and clinical 

implications of the respective isoforms in normal 

biology as well as in cancer remain unclear. CD47 

was first identified as an antigen expressed on 

ovarian carcinoma (Poels et al., 1986), but is 

overexpressed in many solid tumors and 

hematologic malignancies (Jaiswal et al., 2009; 

Chao et al., 2010a; Chao et al., 2011a; Zhao et al., 

2011; Willingham et al., 2012; Rendtlew Danielsen 

et al., 2007; Edris et al., 2012). High levels of CD47 

are also found on human bladder tumor-initiating 

cells and leukemic stem cells (Majeti et al., 2009; 

Chan et al., 2009). Increased CD47 mRNA levels are 

an independent negative prognostic factor in 

multiple types of cancer (Majeti et al., 2009; Chao et 

al., 2010a; Chao et al., 2010a; Chao et al., 2011a; 

Willingham et al., 2012). Further, increased protein 

expression of CD47 associates with poor clinical 

outcome in among others ovarian cancer and 

glioblastoma, (Majeti et al., 2009; Chao et al., 2010a; 

Chao et al., 2011a; Willingham et al., 2012). 

Moreover, high CD47 levels associate with various 

adverse characteristics, such as developmental stage 

of the tumor, adverse molecular subtype, and 

resistance to therapy (Rendtlew Danielsen et al., 

2007; Chao et al., 2010a; Zhao et al., 2011; Edris et 

al., 2012). Interestingly, high levels of CD47 

expression in the bone marrow of breast cancer 

patients lead to a significant reduction in disease free 

survival (Nagahara et al., 2010). 

 

Figure 1: CD47 has a complex and multifactorial role in anti-cancer immunity and cancer biology. CD47 is involved in 
regulation of the activity of different immune cell types, and can induce direct cancer cell death when it is crosslinked. In addition, 

CD47 is involved in angiogenesis. All these aspects are discussed in this review. 

http://atlasgeneticsoncology.org/Tumors/OvarianTumOverviewID5231.html
http://atlasgeneticsoncology.org/Tumors/GliomaOverviewID5763.html
http://atlasgeneticsoncology.org/Tumors/breastID5018.html
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Expression of CD47 binding partners SIRPα and 

TSP-1 in normal cells and cancer 

The best characterized binding partner of CD47 is 

SIRPα (also termed CD172a or SHPS-1). SIRPα is a 

transmembrane protein consisting of three 

extracellular Ig-like domains, a transmembrane 

domain and an intracellular tail containing four 

immunoreceptor tyrosinebased inhibitory motifs 

(ITIMs) (Barclay and Van den Berg, 2014). SIRPα 

belongs to the signal regulatory protein receptor 

family, which is subdivided in a SIRPα and SIRPβ 

subgroup. Expression of SIRPα is restricted to 

phagocytes (macrophages, granulocytes and DCs) 

and neuronal cells (Fujioka et al., 1996). In addition 

to SIRPα, CD47 can bind to SIRPβ2 (also termed 

SIRPγ) albeit with a lower affinity than SIRPα 

(Piccio et al., 2005). SIRPβ2 is among others 

expressed on CD3-positive T-cells (Seiffert et al., 

2001). SIRPα expression in cancer has not been 

extensively evaluated, but in primary brain tumor 

biopsies and astrocytoma cell lines SIRPα 

expression was detected. Of note, this tumor 

expressed SIRPα was underglycosylated compared 

to SIRPα expressed on Chinese hamster ovary 

(CHO) cells (Chen et al., 2004), suggestive of a 

higher affinity for CD47 (see also section of 

posttranslational glycosylation below). In contrast to 

solid tumors, SIRPα is notably down-regulated in 

primary hematopoietic cells and myeloid blasts from 

AML patients (Seiffert et al., 1999). This down-

regulation may be related to the reported induction 

of apoptosis and growth inhibition by SIRPα in 

AML cells (Irandoust et al., 2013). Another 

important binding partner of CD47 is TSP-1, the first 

endogenous ligand identified for CD47. TSP-1 is a 

large matricellular and homotrimeric glycoprotein 

(430kDa) comprising at least six different structural 

domains of which the C-terminal domain binds to 

CD47 (Roberts, 2005). TSP-1 itself is a pleiotropic 

protein important for platelet aggregation, cell-cell 

and cell-matrix interactions, and negative regulation 

of (neo)vascularization. TSP-1 is secreted by various 

normal cell types, i.e. endothelial cells, smooth 

muscle cells and monocytes/macrophages. Further, 

TSP-1 is a major constituent of the extracellular 

matrix in normal tissues and cancer. Preclinical 

evidence suggests that there is an inverse correlation 

with a decrease in TSP-1 and an increase in CD47 

mRNA levels in a prostate cancer model (Vallbo and 

Damber, 2005). Similarly, TSP-1 expression is 

inversely correlated with malignant progression in 

preclinical models as well as in patients with various 

types of cancer, including melanoma, breast, lung 

and bladder cancer (Papadaki et al., 2009; Ioachim 

et al., 2012; Zabrenetzky et al., 1994; Grossfeld et 

al., 1997). In line with this, TSP-1 over-expression 

reduced the tumorigenic potential of human 

cutaneous squamous cell carcinoma (Streit et al., 

1999) and breast carcinoma (Weinstat-Saslow et al., 

1994). Of note, oncogenic transformation of the 

well-established tumor suppressor p53 negatively 

affects TSP-1 expression, with reduced TSP-1 

expression levels in ovarian carcinoma being 

associated with overexpression of p53 (Alvarez et 

al., 2001). Similarly, p53 mutation correlated with 

low TSP-1 levels in bladder cancer (Grossfeld et al., 

1997). Further, survival of p53-null/TSP-1-null mice 

was significantly reduced survival compared to TSP-

1-expressing p53-null mice due to naturally arising 

tumors (Lawler et al., 2001). Thus, TSP-1 has tumor 

suppressor activity in certain cancers and its 

expression may be deregulated by oncogenic p53 

mutation. 

Regulation of CD47 expression and activity 

Transcriptional control of the CD47 gene is 

incompletely understood and has only been studied 

in the context of neuronal development, where 

transcription of CD47 and concomitant neurite 

outgrowth relies on the transcription factor α-

Pal/NRF-1 (Chang and Huang, 2004; Chang et al., 

2005). Similarly, the mechanism underlying 

constitutive upregulation of CD47 during 

transformation and progression is as yet unclear, 

although CD47 can be transiently upregulated by 

mobilizing cytokines in hematopoietic stem cells 

(Jaiswal et al., 2009). The latter has been speculated 

to be a physiological response mechanism exploited 

by hematologic malignancies. CD47 expression is 

also subject to post-transcriptional regulation by 

micro RNAs (miRNAs). Aberrant overexpression of 

CD47 correlates with downregulation of miRNA-

133a in esophageal squamous cell carcinoma and 

colorectal cancer (Suzuki et al., 2012; Dong et al., 

2013). Reporter construct studies validated the 

ability of miR-133a to directly inhibit CD47 

transcription in vitro. Several other regulatory 

miRNAs were identified, i.e. miR-155 in multiple 

sclerosis (MS) and miR-141 in Hirschsprung's 

disease (Junker et al., 2009; Tang et al., 2013). Both 

miRs were found to target the 3'UTR of the CD47 

mRNA. In MS lesions, upregulation of microRNAs 

was proposed to reduce CD47 thereby releasing 

macrophages from inhibitory control and promoting 

phagocytosis of myelin (Junker et al., 2009). Further, 

hypermethylation of a CpG Island in the promoter 

region of miR-141 has been linked to increased 

expression of CD47 (Tang et al., 2013). CD47 is also 

subject to post-translational modifications, most 

notably glycosylation. CD47 has a number of N-

terminal glycosylation sites that directly affect cell 

surface display and regulate interaction with 

extracellular ligands. For instance, deglycosylated 

CD47 has a higher avidity for SIRPα than 

glycosylated CD47 and, vice versa, deglycosylated 

SIRPα has a higher avidity for CD47 (Subramanian 

et al., 2007; Subramanian et al., 2006). Reversely, 

hyperglycosylated SIRPα can disrupt CD47/SIRPα 

interactions (Ogura et al., 2004). Of note, site-

http://atlasgeneticsoncology.org/Anomalies/ClassifAMLID1238.html
http://atlasgeneticsoncology.org/Tumors/ProstateOverviewID5041.html
http://atlasgeneticsoncology.org/Tumors/SkinMelanomID5416.html
http://atlasgeneticsoncology.org/Tumors/LungTumOverviewID5030.html
http://atlasgeneticsoncology.org/Genes/P53ID88.html
http://atlasgeneticsoncology.org/Genes/NRF1ID44233ch7q32.html
http://atlasgeneticsoncology.org/Genes/NRF1ID44233ch7q32.html
http://atlasgeneticsoncology.org/Tumors/colonID5006.html
http://atlasgeneticsoncology.org/Genes/MIR141ID51100ch12p13.html
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directed mutagenesis of N-linked glycosylation sites 

inhibited cell surface localization of CD47 in yeast 

models (Parthasarathy et al., 2006), although similar 

mutagenesis did not affect membrane localization of 

human CD47 in CHO cells (Subramanian et al., 

2006). Aberrant glycosylation of either CD47 or 

SIRPα can also alter downstream responses, with 

differentially glycosylated SIRPα rendering B16 

melanoma cells resistant to CD47-induced inhibition 

of motility (Ogura et al., 2004). In addition, a heavily 

glycosylated (>250 kD) form of CD47 has been 

detected in primary and transformed T-cells, 

endothelial cells and vascular smooth muscle cells 

(Kaur et al., 2011). This modification was located 

distally from the SIRPα binding site, but was 

required for TSP-1 mediated inhibitory signaling in 

T-cells. Although not evaluated in the context of 

cancer as of yet, deregulation of these mechanisms 

may play a role in cancer pathogenesis. 

The diverse immunoregulatory 
effects of CD47 in cancer 

Controlling phagocytic activity through 

CD47/SIRPα interaction 

SIRPα is an important negative regulator of 

phagocyte activity that, upon binding by CD47 to its 

N-terminal IgV domain, is phosphorylated on ITIM 

motifs leading to concomitant activation of SHP-1 

and SHP-2 phosphatases (Hatherley et al., 2008; 

Kharitonenkov et al., 1997; Okazawa et al., 2005). 

Downstream events include inhibition of myosin IIA 

accumulation at the phagocytic synapse (Tsai and 

Discher, 2008) and suppression of respiratory burst 

in phagocytes (van Beek et al., 2012). In line with 

the hypothesis that CD47 overexpression suppresses 

phagocytosis, ectopic overexpression of CD47 in 

CD47lo MOLM-13 myeloid leukemia cells inhibited 

in vitro and in vivo phagocytosis and increased 

tumor outgrowth (Jaiswal et al., 2009). Reversely, 

dissemination of Raji NHL cells was strongly 

reduced after shRNA knockdown of CD47 (Chao et 

al., 2011b). In addition, disruption of CD47-SIRPα 

signaling by either mutagenesis of macrophage-

expressed SIRPα or by treatment with recombinant 

SIRPα-Fc eliminated AML xenografts 

(Theocharides et al., 2012). Thus, cancer cells 

escape from phagocytic removal by upregulation of 

CD47 expression, which inhibits myeloid cell 

activity by binding to SIRPα (figure 2A). 

Controlling T-cell differentiation through 

"reverse" CD47 signaling 

Whereas regulatory effects by CD47 on phagocytes 

is due to SIRPα signaling, regulatory effects on T-

cells mainly stem from signaling through T-cell 

expressed CD47. Specifically, CD47 binding by 

TSP-1 (or SIRPα) can also trigger CD47 intracellular 

signaling in immune cells and thereby affect the 

immunological outcome in cancer. Treatment of 

naïve T-cells (CD4+CD25-) with TSP-1 or an anti-

CD47 mAb upregulated expression of transcription 

factor FoxP3 and promoted the formation of 

regulatory T-cells (Tregs) (Grimbert et al., 2006; 

Baumgartner et al., 2008). Correspondingly, 

elevated serum TSP-1 levels positively correlated 

with the percentage of Tregs in peripheral blood of 

advanced melanoma patients (Baumgartner et al., 

2008).  

 

Figure 2: The diverse immunoregulatory effects of CD47. A. The interaction of CD47 (over) expressed on cancer cells with 
signal regulatory protein α (SIRPα) on phagocytes results in inhibition of phagocytosis. B. CD47 is also expressed on T-cells 

where it regulates diverse processes upon ligation by TSP-1 or anti-CD47 antibodies. Most of these are anti-inflammatory, as the 
differentiation of naïve T-cells into Th1 is inhibited, whereas Treg differentiation is induced. Further, binding of CD47 results in 

reduced proliferation or even T-cell death. However, depending on the context, CD47 ligation can also induce T-cell proliferation 
and activation. 

CD47 activation on naïve T-cells also inhibited the 

differentiation of these cells into T helper 1 (Th1) 

effector cells (Avice et al., 2000). Specifically, 

incubation of umbicilical cord blood mononuclear 

http://atlasgeneticsoncology.org/Genes/PTPN6ID41920ch12p13.html
http://atlasgeneticsoncology.org/Genes/PTPN11ID41910ch12q24.html
http://atlasgeneticsoncology.org/Genes/FOXP3ID44129chXp11.html
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cells with a CD47 antibody in the presence of Th1-

differentiating conditions (IL-12+anti-IL4 mAb) 

reduced both IFN-γ and IL-2 production. This 

inhibition was also obtained when using F(ab')2 

fragments of the CD47 mAb or an TSP-1 derived 

CD47-binding peptide. Mechanistically it was 

uncovered that the reduced Th1 differentiation upon 

CD47 ligation was caused by T-cell 

unresponsiveness toward IL-12 (Avice et al., 2000; 

Latour et al., 2001). In line with this, murine CD47-

/- T-cells had elevated levels of Th1-lineage 

transcription factor Tbet, leading to higher levels of 

IFNγ production and Th1 differentiation than CD47 

expressing cells, both in vitro and in vivo 

(Bouguermouh et al., 2008). Thus, CD47-signaling 

on T-cells has a two-fold effect, namely the 

enhanced differentiation of naïve T-cells into Tregs 

and reduced differentiation into Th1-cells (figure 

2B). Of note, Th1 cells are the most effective helper 

T-cells during anti-tumor immune responses that 

control development and persistence of cytotoxic 

tumor-specific T-cells (Knutson and Disis, 2005). 

Therefore, the anti-cancer effect of CD47-targeted 

agents may be partly attributable to CD47-mediated 

reduction in Treg formation and an enhanced 

induction of Th1 cells via T-cell expressed CD47. 

Controlling T-cell activity through "reverse" 

CD47 signaling 

CD47-signaling can have a diverse and paradoxical 

outcome ranging from induction of T-cell death to 

activation of T-cells. For instance, CD47 ligation 

e.g. through soluble or immobilized TSP-1 induced 

a state of T-cell anergy characterized by 

unresponsiveness to T-cell receptor (TCR) 

stimulation and a lack of proliferation and IL-2 

production (Avice et al., 2001; Li et al., 2001). In 

addition, CD47 ligation on T-cells can directly 

induce cell death, although contrasting data has been 

reported. Specifically, in one study anti-CD47 

antibodies did not affect resting T-cells, but induced 

cell death in anti-CD3 stimulated T-cells (Pettersen 

et al., 1999). Reversely, in a second study, resting T-

cells were sensitive toward CD47 crosslinking, 

whereas anti-CD3 T-activated T-cells proved 

resistant (Mateo et al., 2002). The reason for this 

discrepancy is not known, but might relate to 

different isolation methods and/or use of different 

soluble or cross-linked anti-CD3 mAbs. These 

studies indicate that CD47 ligation mainly serves to 

shut-down T-cell immune responses (figure 2B). 

However, CD47 can also act as T-cell co-stimulator 

leading to enhanced proliferation upon cross-linking 

of anti-CD47 and anti-CD3 antibodies (Reinhold et 

al., 1997; Waclavicek et al., 1997). Notably, the anti-

CD47 and anti-CD3 antibodies needed to be on the 

same surface, with a total lack of T-cell co-

stimulation when one or both antibodies were 

provided in solution. Hence, it was hypothesized that 

anti-CD47 antibodies mimick a co-stimulatory 

signal provided by antigen presenting cells like DCs. 

In line with this, a soluble anti-CD47 antibody 

inhibited T-cell proliferation in co-cultures of T-cells 

and monocyte-derived DCs (Waclavicek et al., 

1997). Further, in Jurkat leukemic T-cells interaction 

of CD47 with TSP-1 or SIRPα on inflammatory 

vascular endothelium induced recruitment of 

lymphocytes into inflammatory tissues (Ticchioni et 

al., 2001). Of note, CD47 was also recently reported 

to directly associate with vascular endothelial 

growth factor (VEGF) receptor-2 (VEGFR-2) 

expressed on T-cells (Kaur et al., 2014). In T-cells, 

VEGF induced VEGFR phosphorylation inhibits T-

cells proliferation and TCR signaling and thus acts 

as an inhibitory pathway. As also reported in 

endothelial cells (see anti-angiogenic effects via 

CD47), VEGFR-2/CD47 interaction was disrupted 

by TSP-1 or CD47 binding peptide. TSP-1 or the 

CD47 binding peptide blocked VEGFR 

phosphorylation in wildtype, but not CD47-/- T-cells. 

Of note, CD47 also regulated expression of both 

VEGF and VEGFR, with CD47-/- cells having 

significantly higher levels of both proteins. Thus, 

CD47 appears to control an autocrine feedback loop 

in T-cells involving VEGF and VEGFR. 

Controlling DC and neutrophil activity through 

"reverse" CD47 signaling 

Like most cells, DCs are also characterized by 

surface expression of CD47. DC-expressed CD47 

was found to be required for DC entry into lymphatic 

vessels and for DC migration under inflammatory 

conditions in mice (Van et al., 2006). Since pre-

treatment with CD47-Fc did not further inhibit DC 

migration in CD47-deficient mice, these effects were 

due to DC-expressed CD47 and through negative 

signaling via e.g. SIRPα ligation. In addition, entry 

of CD47-/- DCs into the marginal zone of the spleen 

was impaired, with a reduced number of DCs in the 

splenic marginal zone in CD47-deficient mice 

(Hagnerud et al., 2006). Of note, the injection of 

CD47+/+ DCs but not CD47-/- DCs triggered efficient 

T-cell priming in CD47-/- mice, demonstrating that 

DC-expressed CD47 is crucial (Van et al., 2006). 

Thus, signaling through the intracellular CD47 

domain on DCs is needed for efficient migration and 

entry of DCs to lymphoid organs. On neutrophils 

CD47 appears to be similarly important for 

migration, with blocking anti-CD47 mAbs delaying 

neutrophil transmigration and the rate of migration 

correlating with neutrophil surface-expressed CD47 

(Parkos et al., 1996; Liu et al., 2001). Thus, CD47 

expressed on DCs and neutrophils is required to 

efficiently induce immune responses. The role of 

CD47 signaling on DCs and neutrophils in anti-

cancer immune responses has not been evaluated yet, 

but will need to be taken into account when 

therapeutic targeting of CD47 is to be considered. 

Therapeutic targeting of CD47 activity in cancer 

immunity 
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The therapeutic potential of targeting the 

immunoregulatory role of CD47 has been mainly 

investigated in the context of its anti-phagocyte 

activity (figure 3A) with a series of studies using 

monoclonal antibodies that disrupt CD47/SIRPα 

interaction. Anti-CD47 monoclonal antibody (mAb) 

B6H12 inhibited in vivo outgrowth and 

dissemination of xenotransplanted solid tumors and 

metastatic leiosarcoma as well as primary human 

NHL (Chao et al., 2011b; Willingham et al., 2012; 

Edris et al., 2012) (figure 3B). Further, in vivo 

outgrowth of human leukemia cells was inhibited by 

either CD47 or SIRPα blocking antibodies (Jaiswal 

et al., 2009; Majeti et al., 2009; Chao et al., 2011a). 

This therapeutic effect required macrophage effector 

cells since clonodrate depletion of macrophages 

abrogated any response (Jaiswal et al., 2009; Majeti 

et al., 2009; Chao et al., 2011a). Nevertheless, the 

mechanism of CD47 antibody-mediated in vivo 

tumor depletion remains debated. Specifically, the 

dominant therapeutic mode-of-action of intact CD47 

antibodies may be antibody dependent cellular 

cytotoxicity (ADCC) and FcR-dependent 

phagocytosis instead of disruption of CD47/SIRPα 

interaction (figure 3B). Indeed, injection of murine 

anti-CD47 mAb clone MIAP410 that does not affect 

CD47/SIRPα interaction (Han et al., 2000) also 

significantly inhibits tumor growth in immune 

competent mice (Willingham et al., 2012). 

Nevertheless, inhibition of CD47/SIRPα interaction 

alone can potentiate phagocytosis since CD47 

targeted F(ab')2 fragments did induce phagocytosis 

of NHL cells by mouse macrophages in vitro (Chao 

et al., 2010a), whereas rituximab derived F(ab')2 

fragments did not induce phagocytosis (figure 3C). 

Further, treatment of transgenic mice lacking SIRPα 

inhibitory signaling (by deletion of its cytoplasmic 

domain) with suboptimal concentrations of an anti-

melanoma therapeutic antibody (mAb TA99) 

yielded effective anticancer activity, indicating that 

SIRPα-derived negative signaling limits antibody-

mediated phagocytic elimination of target cells in 

vivo (figure 3D) (Zhao et al., 2011). Thus, the 

activity of anti-CD47 blocking antibodies may partly 

be attributed to blocking of the CD47 don't eat me 

signal but perhaps for a large part also due to typical 

antibody effector functions upon binding to tumor-

overexpressed CD47. Interestingly, in the above-

described SIRPα-signaling deficient mouse model, 

tumor outgrowth was not affected in the absence of 

therapeutic antibody, indicating that relieving 

CD47/SIRPα signaling is not sufficient for 

elimination of cancerous cells (Zhao et al., 2011; 

Zhao et al., 2012; Soto-Pantoja et al., 2012) (figure 

3D). Based on these data, the blocking of the CD47 

anti-phagocytic signal may only effectively elicit 

phagocytosis of target cells when combined with a 

prominent pro-phagocytic (therapeutic antibody) 

signal (Chao et al., 2010b). Preclinical data support 

this premise, with for instance anti-CD47 mAb 

blocking or CD47 knockdown in SKBR3 breast 

cancer cells potentiating the cytotoxicity of anti-Her-

2 antibody trastuzumab (Zhao et al., 2011).  

 

Figure 3: Therapeutic targeting of CD47 activity in cancer immunity. A. The interaction of CD47 (over) expressed on cancer 
cells with signal regulatory protein α (SIRPα) on phagocytes results in inhibition of phagocytosis. B. The use of full anti-CD47 
antibodies (containing an Fc-domain) prevents the interaction of CD47 with SIRPα, whereby phagocytosis is restored. This is 
also partly mediated by induction of ADCC via the Fcdomain of the antibody. The addition of a therapeutic antibody enhances 
the pro-phagocytic effect of anti-CD47 blockage. C. The use of F(ab')2 fragments of the anti-CD47 antibody (lacking the Fc-

domain) showed efficacy in some studies, whereas others showed the requisite for the presence of a complete functional 
antibody. The addition of a therapeutic antibody enhanced the therapeutic effect of F(ab')2 fragment-mediated CD47-blockage. 

D. Disrupting the CD47/SIRPα signaling pathway by expressing a signaling deficient form of SIRPα (by deletion of its 
cytoplasmic domain), was not sufficient to eliminate cancer cells in mice. However, when these SIRPα-signaling deficient mice 

were treated with an therapeutic antibody, this yielded effective anticancer activity. 
 

Moreover, combination treatment of NHL cells with 

rituximab and anti-CD47 potentiated their in vivo 

phagocytosis and elimination compared to rituximab 

alone (figure 3B) (Chao et al., 2011a). This 

synergistic enhancement also took place when an 

anti-CD47 F(ab')2 was co-administered with 

rituximab (Chao et al., 2011a) (figure 3C). Thus, 

probably the most effective use of releasing the 
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brake on the immune response by blocking CD47 is 

in the context of combinatorial treatment with a 

therapeutic anti-cancer antibody. 

Challenges to CD47-targeting in cancer immune 

evasion 

From the above it appears straightforward that the 

CD47/SIRPα interaction and reverse CD47 signaling 

in immune cells are prominent target for antibody-

based approaches. However, there are a few open 

questions that remain to be addressed. First, several 

reports suggest CD47 can also function as an "eat 

me" signal in certain circumstances. For instance, a 

subset of old erythrocytes present in whole blood 

was shown to bind and to be phagocytosed via 

CD47-SIRPα interactions (Burger et al., 2012). 

Moreover, CD47/SIRPα interaction was shown to 

promote engulfment of apoptotic splenocytes by 

BAM3 macrophages (Tada et al., 2003). 

Transformation with CD47 also augmented 

phagocytosis of a CD47 negative lymphoma cell line 

after the induction of apoptosis. Similarly, trans-

interaction of CD47 and SIRPα resulted in 

endocytosis of ligand-receptor complex by SIRPα-

expressing cells (Kusakari et al., 2008). Second and 

as also discussed earlier, CD47 can bind to SIRPβ2 

(Piccio et al., 2005). The SIRPβ subfamily comprises 

SIRPβ1 and SIRPβ2 and has a short intracellular 

domain of only a few amino acids (e.g. 4 for 

SIRPβ1). Despite this short domain, SIRPβ family 

members can transmit signals, with e.g. a positively 

charged lysine in the transmembrane domain of 

SIRPβ1 mediating interactions with an 

immunoreceptor tyrosine-based activation motif 

(ITAM) containing adaptor protein. Of note, 

whereas SIRPβ1 does not bind to CD47 (Seiffert et 

al., 2001), interaction of SIRPβ2 on CD3-positive T-

cells with endothelial CD47 is required for human T-

cell trans-endothelial migration (Stefanidakis et al., 

2008). Further, SIRPβ2 ligation by CD47 expressed 

on antigen-presenting cells induces T-cell 

proliferation (Piccio et al., 2005). Therefore, the use 

of CD47 blocking antibodies may also affect T-cell 

responses, e.g. by negatively regulating tumor-

infiltration of T-cells. Finally, it will be important to 

assess whether such CD47 antibodies have any 

effect on DC or T-cell activity through activation of 

reverse CD47 signaling. Of note, on DCs this CD47 

signaling is required for migration and should thus 

be activated. In contrast, on T-cells the major effect 

of CD47 signaling appears to be inhibitory with 

induction of T-cell arrest and promotion of 

regulatory T-cell differentiation and should thus be 

inhibited. If and how to reconcile these various 

requisites is an outstanding question. 

Anti-angiogenic and direct anti-
cancer effects mediated by CD47 
CD47 does not only affect the (cancer) immune 

response at various levels, but can also directly affect 

cancer cell biology and (neo)vascularization, i.e. 

tumor growth. Many of these effects can be 

attributed to interaction of tumor cell or endothelial 

cell-expressed CD47 with TSP-1. Thus, the 

CD47/TSP-1 axis represents an important tumor-

suppressor pathway in cancer and is a prominent 

target for therapeutic intervention. 

CD47/TSP-1 mediated anti-angiogenic activity 

The inhibition of angiogenesis is one of the best 

studied effects of CD47/TSP-1 and is due to TSP-1 

mediated modulation of endothelial cell adhesion, 

migration and proliferation (Lawler and Lawler, 

2012). Indeed, vascular outgrowth of explants from 

melanoma cells grown in TSP-1 knock-out mice in 

type I collagen matrices was better compared to 

explants derived from wildtype animals (Isenberg et 

al., 2008). Exogenous addition of TSP-1 to TSP-1-/- 

melanoma explants reduced vascular outgrowth to 

levels comparable to wildtype explants. Reversely, 

cutaneous squamous cell carcinoma cells that 

overexpressed TSP-1 had a decreased tumor vessel 

number and size in mice (Streit et al., 1999). 

Similarly, overexpression of TSP-1 reduced 

vascularization in spontaneous mammary tumors, 

whereas vascularization was significantly increased 

in TSP-1 deficient mice (Rodriguez-Manzaneque et 

al., 2001). The anti-angiogenic effects of TSP-1 were 

initially attributed to its binding to endothelial-

expressed CD36 (Dawson et al., 1997). Specifically, 

native TSP-1 bound to surface immobilized CD36, 

an interaction that was blocked by anti-angiogenic 

TSP-1 peptides (Dawson et al., 1997). However, in 

three-dimensional collagen cultures, the anti-

angiogenic effect of exogenous TSP-1 was 

abrogated in CD47-/- cells, but retained in CD36-/- 

cells (Isenberg et al., 2006), with ligation of CD36 

also failing to inhibit NO-stimulated proliferation in 

CD47-/- cells. Furthermore, anti-angiogenic effects 

of TSP-1 were inhibited by a TSP-1 peptide that 

recognizes CD47, leading to inhibition of vascular 

outgrowth in TSP-1 wildtype muscle explants. 

Similarly, TSP-1 peptide-mediated ligation of CD47 

was sufficient to inhibit NO-stimulated vascular cell 

responses. In line with this, overexpression of TSP-

1 by tumor cells decreases tumor blood flow in 

response to NO in vivo, which was abrogated in mice 

expressing a truncated TSP-1 lacking affinity for 

CD47 (Isenberg et al., 2008). Importantly, inhibitory 

signaling of TSP-1 via CD47 takes place at relevant 

physiological levels of TSP-1 (picomolar range), 

whereas TSP-1 mediated inhibitory signaling via 

CD36 requires higher concentrations of TSP-1 

(nanomolar range) (Isenberg et al., 2006). Thus, 

TSP-1 mediated inhibition of angiogenesis is 

regulated via interactions with both CD36 and 

CD47, whereby CD47 likely acts downstream of 

CD36 in endothelial signaling. Therefore, CD47 is 

the dominant anti-angiogenic receptor for TSP-1 

mediated inhibition of angiogenesis (figure 4A). 
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CD47 mediated regulation of angiogenesis via 

VEGFR-2 

In addition to the above-described TSP-1/CD47-

mediated inhibition of blood vessel formation, CD47 

directly interacts with VEGFR-2 on endothelial cells 

(Kaur et al., 2010). This direct interaction between 

CD47 and VEGFR-2 was demonstrated using 

immunofluorescent co-localization analysis and co-

immunoprecipitation. The association of CD47 with 

VEGFR was abrogated by TSP-1 or TSP-1 derived 

peptides that bind to CD47, but not by CD36 binding 

peptides. Furthermore, TSP-1 binding to CD47 

prevented phosphorylation of VEGFR-2 and its 

downstream target Akt (Kaur et al., 2010). Thus by 

binding to CD47, TSP-1 prevents CD47/VEGFR 

interaction and subsequent downstream signaling. In 

addition, TSP-1 itself also directly interacts with 

VEGF, thereby preventing angiogenic 

VEGF/VEGFR interaction (Gupta et al., 1999). In 

line with this, knockdown of TSP-1 increased the 

association of VEGF with VEGFR in spontaneous 

murine mammary tumors (Rodriguez-Manzaneque 

et al., 2001). Thus, the anti-angiogenic effect of TSP-

1 is also partly due to disturbing VEGF/VEGFR 

interaction either directly by binding to VEGF or by 

inhibition of CD47/ VEGFR interaction, an 

interaction crucial for downstream signaling (figure 

4A). 

Direct anti-cancer effects via cross linking of 

tumor expressed CD47 

The engagement of cancer cell-expressed CD47 by 

soluble TSP-1 strongly inhibited in vitro growth of a 

panel of breast cancer cell lines or pro-myelocytic 

leukemia cells through induction of caspase-

independent cell death (Saumet et al., 2005; Manna 

and Frazier, 2004). In breast cancer cell lines, cell 

death induction by CD47 requires Gi-mediated 

inhibition of protein kinase A (Manna and Frazier, 

2004). Similarly, B-cell chronic lymphocytic 

leukemia cells undergo caspase-independent cell 

death dependent on cytoskeletal reorganization upon 

treatment with soluble TSP-1 or anti-CD47 antibody 

(Mateo et al., 1999; Mateo et al., 2002) (figure 4B). 

Of note, TSP-1 or a CD47-blocking peptide reduced 

cell viability and in vivo growth of cells expressing 

oncogenic RAS, but did not affect immortalized 

nontumorigenic parental cells (Kalas et al., 2013). 

This tumoricidal activity of TSP-1 was dependent on 

CD47 cross-linking and activation of cytotoxic 

autophagy. These experimental results are in line 

with the near complete loss of TSP-1 expression in 

RAS-transformed cells. TSP-1/CD47 interaction can 

also differentially affect cancer cell sensitivity 

toward chemotherapeutics. For instance, TSP-1 

sensitized taxol-resistant prostate cancer cells to 

taxol treatment (Lih et al., 2006), whereas a blocking 

anti-CD47 antibody decreases cytotoxicity of taxol 

treatment. Of note, taxol resistance is partly 

regulated by the txr1 gene, a gene known to down-

regulate TSP-1 expression. Correspondingly, 

treatment with a TSP-1 mimetic peptide sensitized 

cells to taxol by activating CD47 signaling (Lih et 

al., 2006). In contrast, treatment of thyroid 

carcinoma cells with a CD47-binding peptide 

reduced doxorubicin and camtothecin cytotoxicity 

(Rath et al., 2006).  

In line with this, pro-apoptotic activity of 

camtothecin and doxorubicin relied on down-

regulation of TSP-1 expression in thyroid carcinoma 

(Rath et al., 2006). Therefore, the effect of TSP-

1/CD47-signaling on apoptosis is likely dependent 

on cancer type as well as type of therapy. In this 

respect, blocking of either CD47 or TSP-1 increased 

radiosensitivity of tumors, whereas it induced 

radioprotection in normal endothelial cells 

(Maxhimer et al., 2009).  

Although the mechanism of this differential response 

between normal and transformed cells is unknown, 

the in vitro suppression of CD47 did not increase the 

sensitivity of melanoma cells to radiation. Therefore, 

it was hypothesized that the observed enhanced anti-

tumor effects were due to induction of tumor-

specific immune responses. Thus, although cancer 

cells often up-regulate CD47 expression to escape 

from the immune system presumably via SIRPα-

mediated inhibitory signaling, cancer cells may also 

benefit from loss of expression of CD47. In this 

respect, loss of CD47 expression was also found to 

up-regulate c-Myc, induce cell proliferation and 

upregulate the self-renewal potential of endothelial 

cells (Kaur et al., 2013). 

Correspondingly, treatment with TSP-1 or the TSP-

1 derived peptide 7N3, inhibited c-Myc expression 

in Jurkat cells, but did not effect c-Myc expression 

in CD47-/- cells (Kaur et al., 2013). In contrast, the 

use of the TSP-1 derived peptide enhanced 

proliferation in human astrocytoma cell lines via an 

Akt-dependent pathway (Sick et al., 2011). 

Taken together, CD47-signaling via binding to TSP-

1 is involved in both tumorigenic as tumoricidal 

processes, although the latter seem to be the most 

prevalent outcome. 

http://atlasgeneticsoncology.org/Anomalies/CLLID2034.html
http://atlasgeneticsoncology.org/Anomalies/CLLID2034.html
http://atlasgeneticsoncology.org/Deep/Ras.html
http://atlasgeneticsoncology.org/Genes/MYCID27.html
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Figure 4: Anti-angiogenic and direct anti-cancer effects mediated by CD47. A. TSP-1 inhibits angiogenesis via binding to 
CD36 and CD47. However, TSP-1 mediated inhibition of angiogenesis by binding to CD36 is also regulated via CD47. In 

addition, CD47 directly interacts with vascular endothelial growth factor receptor-2 (VEGFR-2) on endothelial cells. By binding to 
CD47, this interaction is abrogated by TSP-1, whereby angiogenesis is inhibited. Further, TSP-1 can directly bind to VEGF, 

thereby preventing its interaction with VEGFR-2. B. Crosslinking of CD47 by antibodies or TSP-1 can lead to caspase-
independent cancer cell death. 

 

 

Therapeutic exploitation of CD47-mediated anti-

angiogenic and direct anti-cancer effects 

Based on the above, the therapeutic exploitation of 

CD47/TSP-1 interaction might prevent or reduce 

angiogenesis and tumor progression through both 

anti-angiogenic and possibly direct anti-cancer 

effects. Proof of concept for the former mechanism 

has been generated using a synthetic peptide, 

designated ABT-510, that mimics the anti-

angiogenic activity of TSP-1. ABT-510 treatment 

significantly increased the number of patients with 

stable disease in patients with advanced solid 

malignancy (12 different types of advanced cancer, 

including colorectal cancer, non-small-cell-lung 

cancer, renal cell cancer and sarcoma) (Hoekstra et 

al., 2005). Further, ABT-510 was well tolerated 

without significant toxicity in phase I trials upon 

subcutaneous application in patients with advanced 

stages of solid cancer (Gordon et al., 2008). 

However, minimal antitumor activity was detected 

in various phase II clinical trials including in 

advanced renal cell carcinoma (Ebbinghaus et al., 

2007), metastatic melanoma (Markovic et al., 2007) 

and advanced soft tissue sarcoma (Baker et al., 

2008). Optimization of peptide design may be used 

to further increase efficacy, as evidenced by a 

comparative study in dogs where better responses 

were detected with the second-generation TSP-1 

peptide ABT-898 (Sahora et al., 2012). However, 

most anti-angiogenic agents are best suited in 

combinatorial strategies with e.g. chemotherapeutics 

(Ma and Waxman, 2008). In line with this, ABT-510 

increased the uptake and effectiveness of cisplatin 

and paclitaxel in a mouse model of epithelial ovarian 

cancer (Campbell et al., 2010). Further, combination 

treatment with ABT-510 and bevacizumab 

prolonged the duration of stable disease in patients 

with advanced solid tumors (Uronis et al., 2013). 

Thus, blocking of TSP-1/CD47 interaction e.g. using 

anti-CD47 antibodies, in further combination with 

anti-angiogenic and chemotherapeutic regimens may 

well have clinical potential. However, clinical 

application of this strategy will need to take into 

account that tumors can upon prolonged exposure 

eventually by-pass anti-angiogenic effects of TSP-1 

(Filleur et al., 2001). In this respect, an optimal 

CD47-targeted strategy would provide a dual hit 

approach that would trigger not only anti-angiogenic 

activity but also direct CD47-mediated anti-cancer 

signaling that would sensitive cells for combinatorial 

strategies such as standard-of-care 

chemo/radiotherapy. 

Conclusions and perspectives 
CD47 is a prominent target for cancer therapy and 

has three main effects that should be considered in 

the design of CD47-based cancer therapy. The first 

and perhaps most studied effect is the inhibitory 

effect on anti-cancer immunity, which occurs 

through overexpression of CD47 on tumor cells and 

http://atlasgeneticsoncology.org/Tumors/LungNonSmallCellID5141.html
http://atlasgeneticsoncology.org/Tumors/LungNonSmallCellID5141.html
http://atlasgeneticsoncology.org/Tumors/RenalCellCarcinID5021.html
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inhibition of phagocytes through SIRPα binding 

(figure 5A).  

The second effect of CD47 is its reverse signaling 

activity through neutrophil, DC, or T-cell expressed 

CD47 that can both inhibit and activate immune 

responses. Finally, CD47 has direct anti-cancer and 

anti-angiogenic activity through its interaction with 

TSP-1 (figure 5B).  

All of these different aspects have to be carefully 

characterized for each malignancy and possibly in 

each patient using appropriately identified predictive 

biomarkers for CD47-based immunotherapy.  

Therapeutic anti-CD47 antibodies have shown 

promising pro-phagocytic activity in preclinical 

models. Further integration of CD47-targeting into 

bi-functional immunotherapeutics that combine 

CD47 blockade with alternate effector moieties may 

help to expand on this therapeutic effect. In this 

respect, we recently described an anti-CD47:TRAIL 

fusion protein that both induced phagocytosis via 

CD47 inhibition as well as induced CD47-restricted 

cell death in malignant B-cells (Wiersma et al., 

2014) (figure 5C). In an analogous fashion, it would 

be interesting to evaluate whether a bispecific 

antibody comprising a CD47 blocking antibody 

fragment and antibody fragment targeting a tumor 

overexpressed antigen could trigger tumor-localized 

accretion and inhibition of negative 

immunoregulatory signaling by CD47. Further, an 

approach combining both the anti-angiogenic effects 

of e.g. TSP-1 peptides and the pro-phagocytic 

activity of anti-CD47 mAbs may yield synergistic 

direct and immunostimulatory effects. 

Finally, CD47 overexpression in cancer can also be 

targeted with siRNA or miRNAs that down-regulate 

CD47.  

The potential of such an approach is highlighted by 

the delivery of liposome encapsulated CD47 siRNA, 

which effectively inhibited melanoma outgrowth 

and metastasis (Wang et al., 2013), whereas CD47-

targeted siRNA or shRNA treatment reduced 

migration of colon cancer cells (Broom et al., 2009; 

Zhang et al., 2013) and prevented in vivo 

dissemination of Non-Hodgkin lymphoma cells 

(Chao et al., 2011b).  

Finally, the transfection or injection of miR-133a, 

known to regulate CD47 expression, into mouse 

tumor xenografts significantly inhibited tumor 

outgrowth (Suzuki et al., 2012; Dong et al., 2013). 

Thus, siRNA or miRNA-mediated down-regulation 

of CD47 is a potentially interesting approach, which 

will however need to be performed using tumor-

selective delivery systems in order to prevent 

systemic side-effects. In conclusion, many different 

therapeutic strategies that target CD47 have already 

proven effective in preclinical models.  

The next few years are likely to witness the 

translation of CD47-targeting approaches into the 

clinic.  

This may hinge on development of strategies that 

have increased the tumor-selectivity of CD47 

blocking as well as identification of optimal 

combinatorial strategies with e.g. standard 

chemo/radiotherapy or combined triggering of anti-

angiogenic TSP-1 signaling. 

 

Figure 5: Perspectives in CD47-targeted cancer therapy. A. Blocking CD47/SIRPα signaling by use of anti-CD47 antibodies 
is effective, especially when combined with other therapeutic antibodies. B. Inhibition of angiogenesis via TSP-1/CD47 mediated 
signaling has potent anti-cancer effects. Combining the enhancement of phagocytosis and inhibition of angiogenesis would be of 

interest. C. Combining CD47 blockade with alternate effector moieties may help to expand on the therapeutic effect of this 
approach. In this respect, the anti-CD47:TRAIL fusion protein induced phagocytosis via CD47 inhibition, especially when 

combined with therapeutic antibodies, as well as induced CD47-restricted cell death in malignant B-cells. 
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