35 research outputs found

    THE INFLUENCE OF THIRD GENERATION ARTIFICIAL SOCCER TURF CHARACTERISTICS ON GROUND REACTION FORCES DURING RUNNING

    Get PDF
    The aim of this study was to determine the effect of different artificial soccer turf pitches on the ground reaction forces of running soccer players. For this purpose ground reaction forces were determined for twenty soccer players while they ran at three different speeds across a 25 meter long track covered with a third generation artificial soccer turf. Three different pitches, two FIFA 1star and one FIFA 2star, were examined. There was no difference between the two 1star systems in the peak vertical and horizontal ground reactions forces. Data on the 2star system was equivocal due to a too small sample size. It is concluded that surface characteristics influence the loading of the human muscle-skeletal system more subtly than initially anticipated. A more detailed biomechanical analysis of the events during impact is required to identify the critical loading parameters

    Regulation of copper homeostasis by members of the COMMD protein family

    Get PDF
    Copper is an essential transition metal for all eukaryotes. In mammals, intestinal copper absorption is mediated by the ATP7A copper transporter, whereas copper excretion occurs predominatly through the biliary route and is mediated by the paralog ATP7B. Both transporters have been shown to be actively recycled between the endosomal network and the plasma membrane by a molecular machinery known as the COMMD/CCDC22/CCDC93 or CCC complex. In fact, mutations in COMMD1 can lead to impaired biliary copper excretion and liver pathology in dogs and mice with liver-specific Commd1 deficiency recapitulating aspects of this phenotype as well. Nonetheless, the role of the CCC complex in intestinal copper absorption in vivo has not been studied, and the potential redundancy of various COMMD family members has not been tested. In this study, we examined copper homeostasis in enterocyte-specific and hepatocyte-specific Commd-deficient mice. We find that in contrast to effects in cell lines in culture, COMMD protein deficiency induces minimal changes in ATP7A in enterocytes and does not lead to altered copper levels under low or high copper diets, suggesting that regulation of ATP7A in enterocytes is not of physiologic consequence. In contrast, deficiency of any of 3 Commd genes (Commd1, 6, and 9) all result in hepatic copper accumulation under high copper diets. We find that each of these deficiencies cause destabilization of the entire CCC complex, and suggest that this might explain their shared phenotype. Overall, we conclude that the CCC complex plays an important role in ATP7B endosomal recycling and function

    An automated archival VLA transients survey

    Get PDF
    In this paper we present the results of a survey for radio transients using data obtained from the Very Large Array archive. We have reduced, using a pipeline procedure, 5037 observations of the most common pointings - i.e. the calibrator fields. These fields typically contain a relatively bright point source and are used to calibrate 'target' observations: they are therefore rarely imaged themselves. The observations used span a time range ˜1984-2008 and consist of eight different pointings, three different frequencies (8.4, 4.8 and 1.4 GHz) and have a total observing time of 435 h. We have searched for transient and variable radio sources within these observations using components from the prototype LOFAR transient detection system. In this paper we present the methodology for reducing large volumes of Very Large Array data; and we also present a brief overview of the prototype LOFAR transient detection algorithms. No radio transients were detected in this survey, therefore we place an upper limit on the snapshot rate of GHz frequency transients >8.0 mJy to ρ≤ 0.032 deg-2 that have typical time-scales 4.3 to 45.3 d. We compare and contrast our upper limit with the snapshot rates - derived from either detections or non-detections of transient and variable radio sources - reported in the literature. When compared with the current Log N-Log S distribution formed from previous surveys, we show that our upper limit is consistent with the observed population. Current and future radio transient surveys will hopefully further constrain these statistics, and potentially discover dominant transient source populations. In this paper we also briefly explore the current transient commissioning observations with LOFAR, and the impact they will make on the field

    The LOFAR Transients Pipeline

    Get PDF
    Current and future astronomical survey facilities provide a remarkably rich opportunity for transient astronomy, combining unprecedented fields of view with high sensitivity and the ability to access previously unexplored wavelength regimes. This is particularly true of LOFAR, a recently-commissioned, low-frequency radio interferometer, based in the Netherlands and with stations across Europe. The identification of and response to transients is one of LOFAR's key science goals. However, the large data volumes which LOFAR produces, combined with the scientific requirement for rapid response, make automation essential. To support this, we have developed the LOFAR Transients Pipeline, or TraP. The TraP ingests multi-frequency image data from LOFAR or other instruments and searches it for transients and variables, providing automatic alerts of significant detections and populating a lightcurve database for further analysis by astronomers. Here, we discuss the scientific goals of the TraP and how it has been designed to meet them. We describe its implementation, including both the algorithms adopted to maximize performance as well as the development methodology used to ensure it is robust and reliable, particularly in the presence of artefacts typical of radio astronomy imaging. Finally, we report on a series of tests of the pipeline carried out using simulated LOFAR observations with a known population of transients.Comment: 30 pages, 11 figures; Accepted for publication in Astronomy & Computing; Code at https://github.com/transientskp/tk

    Posttranscriptional Regulation of the Human LDL Receptor by the U2-Spliceosome

    Get PDF
    Background: The low-density lipoprotein receptor (LDLR) in the liver is the major determinant of LDL-cholesterol levels in human plasma. The discovery of genes that regulate the activity of LDLR helps to identify pathomechanisms of hypercholesterolemia and novel therapeutic targets against atherosclerotic cardiovascular disease.Methods: We performed a genome-wide RNA interference screen for genes limiting the uptake of fluorescent LDL into Huh-7 hepatocarcinoma cells. Top hit genes were validated by in vitro experiments as well as analyses of datasets on gene expression and variants in human populations.Results: The knockdown of 54 genes significantly inhibited LDL uptake. Fifteen of them encode for components or interactors of the U2-spliceosome. Knocking down any one of 11 out of 15 genes resulted in the selective retention of intron 3 of LDLR. The translated LDLR fragment lacks 88% of the full length LDLR and is detectable neither in non-transfected cells nor in human plasma. The hepatic expression of the intron 3 retention transcript is increased in non-alcoholic fatty liver disease as well as after bariatric surgery. Its expression in blood cells correlates with LDL-cholesterol and age. Single nucleotide polymorphisms and three rare variants of one spliceosome gene, RBM25, are associated with LDL-cholesterol in the population and familial hypercholesterolemia, respectively. Compared to overexpression of wild type RBM25, overexpression of the three rare RBM25 mutants in Huh-7 cells led to lower LDL uptake.Conclusions: We identified a novel mechanism of post-transcriptional regulation of LDLR activity in humans and associations of genetic variants of RBM25 with LDL-cholesterol levels.</p

    Pulsar polarisation below 200 MHz: Average profiles and propagation effects

    Get PDF
    Aims: We present the highest-quality polarisation profiles to date of 16 non-recycled pulsars and four millisecond pulsars, observed below 200 MHz with the LOFAR high-band antennas. Based on the observed profiles, we perform an initial investigation of expected observational effects resulting from the propagation of polarised emission in the pulsar magnetosphere and the interstellar medium. Methods: The polarisation data presented in this paper have been calibrated for the geometric-projection and beam-shape effects that distort the polarised information as detected with the LOFAR antennas. We have used RM Synthesis to determine the amount of Faraday rotation in the data at the time of the observations. The ionospheric contribution to the measured Faraday rotation was estimated using a model of the ionosphere. To study the propagation effects, we have compared our low-frequency polarisation observations with archival data at 240, 400, 600, and 1400 MHz. Results: The predictions of magnetospheric birefringence in pulsars have been tested using spectra of the pulse width and fractional polarisation from multifrequency data. The derived spectra offer only partial support for the expected effects of birefringence on the polarisation properties, with only about half of our sample being consistent with the model's predictions. It is noted that for some pulsars these measurements are contaminated by the effects of interstellar scattering. For a number of pulsars in our sample, we have observed significant variations in the amount of Faraday rotation as a function of pulse phase, which is possibly an artefact of scattering. These variations are typically two orders of magnitude smaller than that observed at 1400 MHz by Noutsos et al. (2009), for a different sample of southern pulsars. In this paper we present a possible explanation for the difference in magnitude of this effect between the two frequencies, based on scattering. Finally, we have estimated the magnetospheric emission heights of low-frequency radiation from four pulsars, based on the phase lags between the flux-density and the PA profiles, and the theoretical framework of Blaskiewicz et al. (1991, ApJ, 370, 643). These estimates yielded heights of a few hundred km; at least for PSR B1133+16, this is consistent with emission heights derived based on radius-to-frequency mapping, but is up to a few times larger than the recent upper limit based on pulsar timing. Conclusions: Our work has shown that models, like magnetospheric birefringence, cannot be the sole explanation for the complex polarisation behaviour of pulsars. On the other hand, we have reinforced the claim that interstellar scattering can introduce a rotation of the PA with frequency that is indistinguishable from Faraday rotation and also varies as a function of pulse phase. In one case, the derived emission heights appear to be consistent with the predictions of radius-to-frequency mapping at 150 MHz, although this interpretation is subject to a number of systematic uncertainties

    News on the molecular regulation and function of hepatic low-density lipoprotein receptor and LDLR-related protein 1

    No full text
    Purpose of review Clearing of atherogenic lipoprotein particles by the liver requires hepatic low-density lipoprotein receptor (LDLR) and LDLR-related protein 1 (LRP1). This review highlights recent studies that have expanded our understanding of the molecular regulation and metabolic functions of LDLR and LRP1 in the liver. Recent findings Various proteins orchestrate the intracellular trafficking of LDLR and LRP1. After internalization, the receptors are redirected via recycling endosomes to the cell surface. Several new endocytic proteins that facilitate the endosomal trafficking of LDLR and consequently the clearance of circulating LDL cholesterol have recently been reported. Mutations in some of these proteins cause hypercholesterolemia in human. In addition, LRP1 controls cellular cholesterol efflux by modulating the expression of ABCA1 and ABCG1, and hepatic LRP1 protects against diet-induced hepatic insulin resistance and steatosis through the regulation of insulin receptor trafficking. Summary LDLR and LRP1 have prominent roles in cellular and organismal cholesterol homeostasis. Their functioning, including their trafficking in the cell, is controlled by numerous proteins. Comprehensive studies into the molecular regulation of LDLR and LRP1 trafficking have advanced our fundamental understanding of cholesterol homeostasis, and these insights may lead to novel therapeutic strategies for atherosclerosis, hyperlipidemia and insulin resistance in the future

    The life cycle of the low-density lipoprotein receptor: insights from cellular and in-vivo studies

    No full text
    Purpose of review Long-term exposure to elevated concentrations of LDL cholesterol increases the risk of cardiovascular events. The main player in clearing LDL cholesterol is the LDL receptor (LDLR) trafficking pathway; however, our fundamental knowledge about the mechanisms regulating this pathway is still incomplete. Recent findings The LDLR pathway is very complex and involves multiple proteins. Endocytosis is regulated by two different adaptor proteins, that is, autosomal recessive hypercholesterolemia and Disabled-2. The proteolysis of the LDLR is regulated by inducible degrader of the LDLR and proprotein convertase subtilisin/kexin type 9. However, only a few proteins have been identified that provide insights into the endosomal sorting and recycling of the LDLR. Summary Since the discovery of LDLR, knowledge about its function has greatly expanded. As a result of its importance in maintaining homeostatic LDL levels, the LDLR pathway has emerged as a key therapeutic target to reduce circulating cholesterol. In order to be able to treat and diagnose individuals with hypercholesterolemia in the future, it is important to learn more about the LDLR trafficking pathway, as we still lack a full mechanistic understanding of how LDLR trafficking is controlled

    The life cycle of the low-density lipoprotein receptor:insights from cellular and in-vivo studies

    No full text
    Purpose of review Long-term exposure to elevated concentrations of LDL cholesterol increases the risk of cardiovascular events. The main player in clearing LDL cholesterol is the LDL receptor (LDLR) trafficking pathway; however, our fundamental knowledge about the mechanisms regulating this pathway is still incomplete. Recent findings The LDLR pathway is very complex and involves multiple proteins. Endocytosis is regulated by two different adaptor proteins, that is, autosomal recessive hypercholesterolemia and Disabled-2. The proteolysis of the LDLR is regulated by inducible degrader of the LDLR and proprotein convertase subtilisin/kexin type 9. However, only a few proteins have been identified that provide insights into the endosomal sorting and recycling of the LDLR. Summary Since the discovery of LDLR, knowledge about its function has greatly expanded. As a result of its importance in maintaining homeostatic LDL levels, the LDLR pathway has emerged as a key therapeutic target to reduce circulating cholesterol. In order to be able to treat and diagnose individuals with hypercholesterolemia in the future, it is important to learn more about the LDLR trafficking pathway, as we still lack a full mechanistic understanding of how LDLR trafficking is controlled
    corecore