138 research outputs found

    Hierarchy of Life: Whose Lives Do We Value?

    Get PDF
    COVID-19 has heightened already existing health disparities amongst marginalized communities within the United States. In crisis, whose lives do healthcare systems value most and how are these decisions rooted in ableism and racism? Who is responsible for these inequities and in what ways? This multimedia presentation and companion paper explore these important questions

    Evaluating cortical responses to speech in children: A functional near-infrared spectroscopy (fNIRS) study.

    Get PDF
    Functional neuroimaging of speech processing has both research and clinical potential. This work is facilitating an ever-increasing understanding of the complex neural mechanisms involved in the processing of speech. Neural correlates of speech understanding also have potential clinical value, especially for infants and children, in whom behavioural assessments can be unreliable. Such measures would not only benefit normally hearing children experiencing speech and language delay, but also hearing impaired children with and without hearing devices. In the current study, we examined cortical correlates of speech intelligibility in normally hearing paediatric listeners. Cortical responses were measured using functional near-infrared spectroscopy (fNIRS), a non-invasive neuroimaging technique that is fully compatible with hearing devices, including cochlear implants. In nineteen normally hearing children (aged 6 – 13 years) we measured activity in temporal and frontal cortex bilaterally whilst participants listened to both clear- and noise-vocoded sentences targeting four levels of speech intelligibility. Cortical activation in superior temporal and inferior frontal cortex was generally stronger in the left hemisphere than in the right. Activation in left superior temporal cortex grew monotonically with increasing speech intelligibility. In the same region, we identified a trend towards greater activation on correctly vs. incorrectly perceived trials, suggesting a possible sensitivity to speech intelligibility per se, beyond sensitivity to changing acoustic properties across stimulation conditions. Outside superior temporal cortex, we identified other regions in which fNIRS responses varied with speech intelligibility. For example, channels overlying posterior middle temporal regions in the right hemisphere exhibited relative deactivation during sentence processing (compared to a silent baseline condition), with the amplitude of that deactivation being greater in more difficult listening conditions. This finding may represent sensitivity to components of the default mode network in lateral temporal regions, and hence effortful listening in normally hearing paediatric listeners. Our results indicate that fNIRS has the potential to provide an objective marker of speech intelligibility in normally hearing children. Should these results be found to apply to individuals experiencing language delay or to those listening through a hearing device, such as a cochlear implant, fNIRS may form the basis of a clinically useful measure of speech understanding

    Generational Differences in Faculty and Student Comfort with Technology Use

    Get PDF
    Background: Navigating through online education courses continues to be a struggle for some nursing students. At the same time, integrating technology into online courses can be difficult for nursing faculty. Purpose: The purpose of this study was to assess faculty technology integration practices, student attitudes about technology use, and generational differences related to faculty and student technology use. Methods: A descriptive cross-sectional survey design was used to obtain data for this study. Results: Integration of technology into online courses and student attitudes about technology use were not significantly different by generation. Faculty and students from the Baby Boomer and Generation X reported less comfort using technology and higher levels of anxiety using technology than did individuals from Generation Y. Conclusion: Significant generational variations were not noted in relation to technology integration into courses and overall student attitudes about technology in this study, but differences were noted in relation to comfort with use of technology and anxiety when using technology. Student learning outcomes and satisfaction with learning may be influenced by the student\u27s comfort using technology and faculty\u27s confidence in integrating and using technology to provide online instruction

    Lifespan Differences in Cortico-Striatal Resting State Connectivity

    Full text link
    Distinctive cortico-striatal circuits that serve motor and cognitive functions have been recently mapped based on resting state connectivity. It has been reported that age differences in cortico-striatal connectivity relate to cognitive declines in aging. Moreover, children in their early teens (i.e., youth) already show mature motor network patterns while their cognitive networks are still developing. In the current study, we examined age differences in the frontal-striatal ?cognitive? and ?motor? circuits in children and adolescence, young adults (YAs), and older adults (OAs). We predicted that the strength of the ?cognitive? frontal-striatal circuits would follow an inverted ?U? pattern across age; children and OAs would have weaker connectivity than YAs. However, we predicted that the ?motor? circuits would show less variation in connectivity strength across the lifespan. We found that most areas in both the ?cognitive? and ?motor? circuits showed higher connectivity in YAs than children and OAs, suggesting general inverted ?U?-shaped changes across the lifespan for both the cognitive and motor frontal-striatal networks.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140317/1/brain.2013.0155.pd

    Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches.

    Get PDF
    The cerebellum plays a role in a wide variety of complex behaviors. In order to better understand the role of the cerebellum in human behavior, it is important to know how this structure interacts with cortical and other subcortical regions of the brain. To date, several studies have investigated the cerebellum using resting-state functional connectivity magnetic resonance imaging (fcMRI; Krienen and Buckner, 2009; O'Reilly et al., 2010; Buckner et al., 2011). However, none of this work has taken an anatomically-driven lobular approach. Furthermore, though detailed maps of cerebral cortex and cerebellum networks have been proposed using different network solutions based on the cerebral cortex (Buckner et al., 2011), it remains unknown whether or not an anatomical lobular breakdown best encompasses the networks of the cerebellum. Here, we used fcMRI to create an anatomically-driven connectivity atlas of the cerebellar lobules. Timecourses were extracted from the lobules of the right hemisphere and vermis. We found distinct networks for the individual lobules with a clear division into "motor" and "non-motor" regions. We also used a self-organizing map (SOM) algorithm to parcellate the cerebellum. This allowed us to investigate redundancy and independence of the anatomically identified cerebellar networks. We found that while anatomical boundaries in the anterior cerebellum provide functional subdivisions of a larger motor grouping defined using our SOM algorithm, in the posterior cerebellum, the lobules were made up of sub-regions associated with distinct functional networks. Together, our results indicate that the lobular boundaries of the human cerebellum are not necessarily indicative of functional boundaries, though anatomical divisions can be useful. Additionally, driving the analyses from the cerebellum is key to determining the complete picture of functional connectivity within the structure

    An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers

    Get PDF
    Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H₂. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH₄ to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H₂ oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface
    corecore