71 research outputs found

    Beitrag zur Analyse des elektrischen Verhaltens von hoch-sperrenden rückwärts leitfähigen Insulated Gate Bipolar Transistoren

    Get PDF
    Rückwärts leitfähige IGBTs bilden einen neuen Typ von Leistungshalbleitern, welche die Funktionalität von IGBT und antiparallelen Dioden in einem Chip integrieren. Zur Prävention eines Snapbacks der Durchlassspannung besteht der Bi-mode Insulated Gate Bipolar Transistor aus einer Parallelschaltung eines konventionellen IGBTs und eines RC-IGBTs. Der Chipaufbau von rückwärts leitfähigen IGBT führt zu deutlichen Änderungen des elektrischen Verhaltens im Vergleich zu konventinellen IGBTs

    Quantum dots as optimized chiral emitters for photonic integrated circuits

    Full text link
    Chiral coupling, which allows directional interactions between quantum dots (QDs) and photonic crystal waveguide modes, holds promise for enhancing the functionality of quantum photonic integrated circuits. Elliptical polarizations of QD transitions offer a considerable enhancement in directionality. However, in epitaxial QD fabrication, the lack of precise control over lateral QD positions still poses a challenge in achieving efficient chiral interfaces. Here, we present a theoretical analysis in which we propose to optimize the polarization of a QD emitter against the spatially averaged directionality and demonstrate that the resulting emitter offers a considerable technological advantage in terms of the size and location of high-directionality areas of the waveguide as well as their overlap with the regions of large Purcell enhancement, thereby improving the scalability of the device. Moreover, using kâ‹…p\mathbf{\mathit{k}}\cdot\mathbf{\mathit{p}} modeling, we demonstrate that the optimal elliptical polarization can be achieved for neutral exciton transitions in a realistic QD structure. Our results present a viable path for efficient chiral coupling in QD-based photonic integrated circuits, to a large extent overcoming the challenges and limitations of the present manufacturing technology.Comment: Some text modifications in the Introduction, references added, typos corrected, Fig. 7 updated, and the title change

    Electrochemically Switchable Multimode Strong Coupling in Plasmonic Nanocavities

    Get PDF
    The strong-coupling interaction between quantum emitters and cavities provides the archetypical platform for fundamental quantum electrodynamics. Here we show that methylene blue (MB) molecules interact coherently with subwavelength plasmonic nanocavity modes at room temperature. Experimental results show that the strong coupling can be switched on and off reversibly when MB molecules undergo redox reactions which transform them to leuco-methylene blue molecules. In simulations we demonstrate the strong coupling between the second excited plasmonic cavity mode and resonant emitters. However, we also show that other detuned modes simultaneously couple efficiently to the molecular transitions, creating unusual cascades of mode spectral shifts and polariton formation. This is possible due to the relatively large plasmonic particle size resulting in reduced mode splittings. The results open significant potential for device applications utilizing active control of strong coupling

    Systematic study of the influence of coherent phonon wave packets on the lasing properties of a quantum dot ensemble

    Full text link
    Kohärente Phononen können die Licht-Materie-Wechselwirkung in Halbleiter Nanostrukturen stark ändern. Bei einem Ensemble von Quantenpunkten (QP) als aktivem Lasermedium sind Phononen im Stande, die Laserintensität deutlich zu verstärken oder abzuschwächen. Die Physik des gekoppelten Phonon-Exziton-Licht-Systems wird von verschiedenen Mechanismen dominiert, die im Experiment nicht eindeutig unterschieden werden können, da die komplizierte Probenstruktur zu einem komplexen Verspannungspuls führt, der auf das QP-Ensemble trifft. Hier zeigen wir durch eine umfassende theoretische Studie, wie die Laseremission durch Phononpulse verschiedener Form und QP-Ensembles verschiedener spektraler Verteilung beeinflusst wird. Dies erlaubt einen Einblick in die grundlegenden Wechselspiele des gekoppelten Gesamtsystems. Dadurch können wir zwischen zwei Mechanismen unterschieden: der adiabatischen Verschiebung des Ensembles und dem Schüttel-Effekt. Dies ebnet den Weg zu einer gezielten Kontrolle der Laser Emission durch kohärente Phononen.Coherent phonons can greatly vary light–matter interaction in semiconductor nanostructures placed inside an optical resonator on a picosecond time scale. For an ensemble of quantum dots (QDs) as active laser medium, phonons are able to induce a large enhancement or attenuation of the emission intensity, as has been recently demonstrated. The physics of this coupled phonon–exciton–light system consists of various effects, which in the experiment typically cannot be clearly separated, in particular, due to the complicated sample structure a rather complex strain pulse impinges on the QD ensemble. Here we present a comprehensive theoretical study how the laser emission is affected by phonon pulses of various shapes as well as by ensembles with different spectral distributions of the QDs. This gives insight into the fundamental interaction dynamics of the coupled phonon–exciton–light system, while it allows us to clearly discriminate between two prominent effects: the adiabatic shifting of the ensemble and the shaking effect. This paves the way to a tailored laser emission controlled by phonons.</p

    Acoustic phonon sideband dynamics during polaron formation in a single quantum dot

    Get PDF
    TK, DW & PM acknowledge support form the Polish National Agency for Academic Exchange under the International Academic Partnerships program, the Würzburg group by the State of Bavaria and C.S by the DFG (project Schn1376-5.1).When an electron–hole pair is optically excited in a semiconductor quantum dot, the host crystal lattice adapts to the presence of the generated charge distribution. Therefore, the coupled exciton–phonon system has to establish a new equilibrium, which is reached in the form of a quasiparticle called a polaron. Especially, when the exciton is abruptly generated on a timescale faster than the typical lattice dynamics, the lattice cannot follow adiabatically. Consequently, rich dynamics on the picosecond timescale of the coupled system is expected. In this study, we combine simulations and measurements of the ultrafast, coherent, nonlinear optical response, obtained by four-wave mixing (FWM) spectroscopy, to resolve the formation of this polaron. By detecting and investigating the phonon sidebands in the FWM spectra for varying pulse delays and different temperatures, we have access to the influence of phonon emission and absorption processes, which finally result in the emission of an acoustic wave packet.PostprintPeer reviewe

    Resonance-fluorescence spectral dynamics of an acoustically modulated quantum dot

    Get PDF
    Quantum technologies that rely on photonic qubits require a precise controllability of their properties. For this purpose hybrid approaches are particularly attractive because they offer a large flexibility to address different aspects of the photonic degrees of freedom. When combining photonics with other quantum platforms like phonons, quantum transducers have to be realized that convert between the mechanical and optical domain. Here, we realize this interface between phonons in the form of surface acoustic waves (SAWs) and single photons, mediated by a single semiconductor quantum dot exciton. In this combined theoretical and experimental study, we show that the different sidebands exhibit characteristic blinking dynamics that can be controlled by detuning the laser from the exciton transition. By developing analytical approximations we gain a better understanding of the involved internal dynamics. Our specific SAW approach allows us to reach the ideal frequency range of around 1 GHz that enables simultaneous temporal and spectral phonon sideband resolution close to the combined fundamental time-bandwidth limit
    • …
    corecore