5 research outputs found

    Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems

    Get PDF
    We report experimental signals of Bose-Einstein condensation in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4Ď€\pi detector array to the forward angle VAMOS magnetic spectrometer, allowed us to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. Furthermore, by means of quantum fluctuation analysis techniques, temperatures and mean volumes per particle "as seen by" bosons and fermions separately are correlated to the excitation energy of the reconstructed system. The obtained results are consistent with the production of dilute mixed (bosons/fermions) systems, where bosons experience a smaller volume as compared to the surrounding fermionic gas. Our findings recall similar phenomena observed in the study of boson condensates in atomic traps.Comment: Submitted to Phys. Rev. Lett. (december 2014

    Nuclear symmetry energy in calcium-calcium collisions (INDRA-VAMOS)

    No full text
    The density dependence of the symmetry energy is of great interest to many fields of nuclear physics and nuclear astro-physics. The E503 INDRA-VAMOS experiment performed at GANIL in 2007 is intended to provide further sub-saturation constraints using calcium-calcium collisions around the Fermi energy (35AMeV). In these proceedings this experiment will be discussed in the context of the physics it is aiming to study and will give a brief summary of the current progress of the data analysis
    corecore