162 research outputs found

    Patient Simulation: A Literary Synthesis of Assessment Tools in Anesthesiology

    Get PDF
    High-fidelity patient simulation (HFPS) has been hypothesized as a modality for assessing competency of knowledge and skill in patient simulation, but uniform methods for HFPS performance assessment (PA) have not yet been completely achieved. Anesthesiology as a field founded the HFPS discipline and also leads in its PA. This project reviews the types, quality, and designated purpose of HFPS PA tools in anesthesiology. We used the systematic review method and systematically reviewed anesthesiology literature referenced in PubMed to assess the quality and reliability of available PA tools in HFPS. Of 412 articles identified, 50 met our inclusion criteria. Seventy seven percent of studies have been published since 2000; more recent studies demonstrated higher quality. Investigators reported a variety of test construction and validation methods. The most commonly reported test construction methods included "modified Delphi Techniques" for item selection, reliability measurement using inter-rater agreement, and intra-class correlations between test items or subtests. Modern test theory, in particular generalizability theory, was used in nine (18%) of studies. Test score validity has been addressed in multiple investigations and shown a significant improvement in reporting accuracy. However the assessment of predicative has been low across the majority of studies. Usability and practicality of testing occasions and tools was only anecdotally reported. To more completely comply with the gold standards for PA design, both shared experience of experts and recognition of test construction standards, including reliability and validity measurements, instrument piloting, rater training, and explicit identification of the purpose and proposed use of the assessment tool, are required

    Measuring readiness-to-hand through differences in attention to the task vs. attention to the tool

    Get PDF
    New interaction techniques, like multi-touch, tangible inter-action, and mid-air gestures often promise to be more intuitive and natural; however, there is little work on how to measure these constructs. One way is to leverage the phenomenon of tool embodiment—when a tool becomes an extension of one’s body, attention shifts to the task at hand, rather than the tool itself. In this work, we constructed a framework to measure tool embodiment by incorporating philosophical and psychological concepts. We applied this framework to design and conduct a study that uses attention to measure readiness-to-hand with both a physical tool and a virtual tool. We introduce a novel task where participants use a tool to rotate an object, while simultaneously responding to visual stimuli both near their hand and near the task. Our results showed that participants paid more attention to the task than to both kinds of tool. We also discuss how this evaluation framework can be used to investigate whether novel interaction techniques allow for this kind of tool embodiment.Postprin

    The genetics of cortical organisation and development: A study of 2,347 neuroimaging phenotypes

    Get PDF
    Our understanding of the genetic architecture of the human cerebral cortex is limited both in terms of the diversity of brain structural phenotypes and the anatomical granularity of their associations with genetic variants. Here, we conducted genome-wide association meta-analysis of 13 structural and diffusion magnetic resonance imaging derived cortical phenotypes, measured globally and at 180 bilaterally averaged regions in 36,843 individuals from the UK Biobank and the ABCD cohorts. These phenotypes include cortical thickness, surface area, grey matter volume, and measures of folding, neurite density, and water diffusion. We identified 4,349 experiment-wide significant loci associated with global and regional phenotypes. Multiple lines of analyses identified four genetic latent structures and causal relationships between surface area and some measures of cortical folding. These latent structures partly relate to different underlying gene expression trajectories during development and are enriched for different cell types. We also identified differential enrichment for neurodevelopmental and constrained genes and demonstrate that common genetic variants associated with surface area and volume specifically are associated with cephalic disorders. Finally, we identified complex inter-phenotype and inter-regional genetic relationships among the 13 phenotypes which reflect developmental differences among them. These analyses help refine the role of common genetic variants in human cortical development and organisation

    Equal opportunities: Do shareable interfaces promote more group participation than single users displays?

    Get PDF
    Computers designed for single use are often appropriated suboptimally when used by small colocated groups working together. Our research investigates whether shareable interfaces–that are designed for more than one user to inter-act with–can facilitate more equitable participation in colocated group settings compared with single user displays. We present a conceptual framework that characterizes Shared Information Spaces (SISs) in terms of how they constrain and invite participation using different entry points. An experiment was conducted that compared three different SISs: a physical-digital set-up (least constrained), a multitouch tabletop (medium), and a laptop display (most constrained). Statistical analyses showed there to be little difference in participation levels between the three conditions other than a predictable lack of equity of control over the interface in the laptop condition. However, detailed qualitative analyses revealed more equitable participation took place in the physical-digital condition in terms of verbal utterances over time. Those who spoke the least contributed most to the physical design task. The findings are discussed in relation to the conceptual framework and, more generally, in terms of how to select, design, and combine different display technologies to support collaborative activities

    Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders

    Get PDF
    Autism spectrum disorder (ASD) risk is influenced by common polygenic and de novo variation. We aimed to clarify the influence of polygenic risk for ASD and to identify subgroups of ASD cases, including those with strongly acting de novo variants, in which polygenic risk is relevant. Using a novel approach called the polygenic transmission disequilibrium test and data from 6,454 families with a child with ASD, we show that polygenic risk for ASD, schizophrenia, and greater educational attainment is over-transmitted to children with ASD. These findings hold independent of proband IQ. We find that polygenic variation contributes additively to risk in ASD cases who carry a strongly acting de novo variant. Lastly, we show that elements of polygenic risk are independent and differ in their relationship with phenotype. These results confirm that the genetic influences on ASD are additive and suggest that they create risk through at least partially distinct etiologic pathways

    The Polygenic and Monogenic Basis of Blood Traits and Diseases

    Get PDF
    Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation. Analysis of blood cell traits in the UK Biobank and other cohorts illuminates the full genetic architecture of hematopoietic phenotypes, with evidence supporting the omnigenic model for complex traits and linking polygenic burden with monogenic blood diseases
    • …
    corecore