3,584 research outputs found
Self heating and nonlinear current-voltage characteristics in bilayer graphene
We demonstrate by experiments and numerical simulations that the
low-temperature current-voltage characteristics in diffusive bilayer graphene
(BLG) exhibit a strong superlinearity at finite bias voltages. The
superlinearity is weakly dependent on doping and on the length of the graphene
sample. This effect can be understood as a result of Joule heating. It is
stronger in BLG than in monolayer graphene (MLG), since the conductivity of BLG
is more sensitive to temperature due to the higher density of electronic states
at the Dirac point.Comment: 9 pages, 7 figures, REVTeX 4.
A formal definition and a new security mechanism of physical unclonable functions
The characteristic novelty of what is generally meant by a "physical
unclonable function" (PUF) is precisely defined, in order to supply a firm
basis for security evaluations and the proposal of new security mechanisms. A
PUF is defined as a hardware device which implements a physical function with
an output value that changes with its argument. A PUF can be clonable, but a
secure PUF must be unclonable. This proposed meaning of a PUF is cleanly
delineated from the closely related concepts of "conventional unclonable
function", "physically obfuscated key", "random-number generator", "controlled
PUF" and "strong PUF". The structure of a systematic security evaluation of a
PUF enabled by the proposed formal definition is outlined. Practically all
current and novel physical (but not conventional) unclonable physical functions
are PUFs by our definition. Thereby the proposed definition captures the
existing intuition about what is a PUF and remains flexible enough to encompass
further research. In a second part we quantitatively characterize two classes
of PUF security mechanisms, the standard one, based on a minimum secret
read-out time, and a novel one, based on challenge-dependent erasure of stored
information. The new mechanism is shown to allow in principle the construction
of a "quantum-PUF", that is absolutely secure while not requiring the storage
of an exponentially large secret. The construction of a PUF that is
mathematically and physically unclonable in principle does not contradict the
laws of physics.Comment: 13 pages, 1 figure, Conference Proceedings MMB & DFT 2012,
Kaiserslautern, German
Generation of bipartite spin entanglement via spin-independent scattering
We consider the bipartite spin entanglement between two identical fermions
generated in spin-independent scattering. We show how the spatial degrees of
freedom act as ancillas for the creation of entanglement to a degree that
depends on the scattering angle, . The number of Slater determinants
generated in the process is greater than 1, corresponding to genuine quantum
correlations between the identical fermions. The maximal entanglement
attainable of 1 ebit is reached at . We also analyze a simple
dependent Bell's inequality, which is violated for
. This phenomenon is unrelated to the symmetrization
postulate but does not appear for unequal particles.Comment: 5 pages and 3 figures. Accepted in PR
Gene rearrangements in bone marrow cells of patients with acute myelogenous leukemia
At diagnosis, clonal gene rearrangement probes {[}retinoic acid receptor (RAR)-alpha, major breakpoint cluster region (M-bcr), immunoglobulin (Ig)-JH, T cell receptor (TcR)-beta, myeloid lymphoid leukemia (MLL) or cytokine genes (GM-CSF, G-CSF, IL-3)] were detected in bone marrow samples from 71 of 153 patients with acute myelogenous leukemia (AML) (46%): in 41 patients with primary AML (pAML) (58%) and in 30 patients with secondary AML (42%). In all cases with promyelocytic leukemia (AML-M3) RAR-alpha gene rearrangements were detected (n = 9). Gene rearrangements in the Ig-JH or the TcR-beta or GM-CSF or IL-3 or MLL gene were detected in 12, 10, 16 and 12% of the cases, respectively, whereas only few cases showed gene rearrangements in the M-bcr (6%) or G-CSF gene (3%). Survival of pAML patients with TcR-beta gene rearrangements was longer and survival of pAML patients with IL-3 or GM-CSF gene rearrangement was shorter than in patients without those rearrangements. No worse survival outcome was seen in patients with rearrangements in the MLL, Ig-JH or M-bcr gene. In remission of AML (CR), clonal gene rearrangements were detected in 23 of 48 cases (48%) if samples were taken once in CR, in 23 of 26 cases (88%) if samples were taken twice in CR and in 23 of 23 cases (100%) if samples were studied three times in CR. All cases with gene rearrangements at diagnosis showed the same kind of rearrangement at relapse of the disease (n = 12). Our data show that (1) populations with clonal gene rearrangements can be regularly detected at diagnosis, in CR and at relapse of AML. (2) Certain gene rearrangements that are detectable at diagnosis have a prognostic significance for the patients' outcome. Our results point out the significance of gene rearrangement analyses at diagnosis of AML in order to identify `poor risk' patients - independently of the karyotype. Moreover, the persistence of clonal cells in the further course of AML can be studied by gene rearrangement analysis. Copyright (C) 2000 S. Karger AG, Basel
Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling
We have studied electronic conductivity and shot noise of bilayer graphene
(BLG) sheets at high bias voltages and low bath temperature K. As a
function of bias, we find initially an increase of the differential
conductivity, which we attribute to self-heating. At higher bias, the
conductivity saturates and even decreases due to backscattering from optical
phonons. The electron-phonon interactions are also responsible for the decay of
the Fano factor at bias voltages V. The high bias electronic
temperature has been calculated from shot noise measurements, and it goes up to
K at V. Using the theoretical temperature dependence of BLG
conductivity, we extract an effective electron-optical phonon scattering time
. In a 230 nm long BLG sample of mobility
cmVs, we find that decreases with increasing
voltage and is close to the charged impurity scattering time fs
at V.Comment: 7 pages, 7 figures. Extended version of the high bias part of version
1. The low bias part is discussed in arXiv:1102.065
Using mutual information to measure order in model glass-formers
Whether or not there is growing static order accompanying the dynamical
heterogeneity and increasing relaxation times seen in glassy systems is a
matter of dispute. An obstacle to resolving this issue is that the order is
expected to be amorphous and so not amenable to simple order parameters. We use
mutual information to provide a general measurement of order that is sensitive
to multi-particle correlations. We apply this to two glass-forming systems (2D
binary mixtures of hard disks with different size ratios to give varying
amounts of hexatic order) and show that there is little growth of amorphous
order in the system without crystalline order. In both cases we measure the
dynamical length with a four-point correlation function and find that it
increases significantly faster than the static lengths in the system as density
is increased. We further show that we can recover the known scaling of the
dynamic correlation length in a kinetically constrained model, the 2-TLG.Comment: 10 pages, 12 Figure
- …