17 research outputs found

    Prediction of Selected Biosynthetic Pathways for the Lipopolysaccharide Components in Porphyromonas gingivalis

    No full text
    Porphyromonas gingivalis is an oral human pathogen. The bacterium destroys dental tissue and is a serious health problem worldwide. Experimental data and bioinformatic analysis revealed that the pathogen produces three types of lipopolysaccharides (LPS): normal (O-type), anionic (A-type), and capsular (K-type). The enzymes involved in the production of all three types of lipopolysaccharide have been largely identified for the first two and partially for the third type. In the current work, we use bioinformatics tools to predict biosynthetic pathways for the production of the normal (O-type) lipopolysaccharide in the W50 strain Porphyromonas gingivalis and compare the pathway with other putative pathways in fully sequenced and completed genomes of other pathogenic strains. Selected enzymes from the pathway have been modeled and putative structures are presented. The pathway for the A-type antigen could not be predicted at this time due to two mutually exclusive structures proposed in the literature. The pathway for K-type antigen biosynthesis could not be predicted either due to the lack of structural data for the antigen. However, pathways for the synthesis of lipid A, its core components, and the O-type antigen ligase reaction have been proposed based on a combination of experimental data and bioinformatic analyses. The predicted pathways are compared with known pathways in other systems and discussed. It is the first report in the literature showing, in detail, predicted pathways for the synthesis of selected LPS components for the model W50 strain of P. gingivalis

    Design of small molecule inhibitors of type III secretion system ATPase EscN from enteropathogenic Escherichia coli

    No full text
    Enteropathogenic E. coli (EPEC) is a human pathogen using type III secretion system for delivery of proteins directly into the human host. The system contains a single ATPase, EscN, which is essential for uncoupling of proteins from their complexes with chaperones before the delivery. The structure of EscN ATPase (PDB code: 2obm) was used to screen computationally for small molecule inhibitors blocking its active site. Two lead candidates were examined but only one, Compound 54, was selected for further optimization. After extended QSAR optimization, two derivatives were found to be competitive inhibitors of EscN capable of blocking ATPase activity with a Ki below 50 µM. One candidate, WEN05-03, with a Ki=16±2 µM, was also minimally toxic to mammalian cells as determined by other assays. In the cell infection model of HeLa cells with EPEC, Compound WEN05-03 completely blocked actin cluster formation at 100 µM concentration, when analyzed by confocal microscopy. The second best inhibitor of EscN ATPase activity was WEN04-34 with a Ki=46±2 µM. However, the compound was highly toxic to the BALB/3T3 cell line. In summary, the work identifies a compound blocking bacterial ATPase in its active site without causing cellular toxicity to the host cells. It is the first report showing feasibility of using bacterial virulence system ATPase as a target for safe, non-toxic compounds and offering a proof-of-concept for non-antibiotic alternatives

    Dihydrolipoamide Acetyltransferase AceF Influences the Type III Secretion System and Resistance to Oxidative Stresses through RsmY/Z in Pseudomonas aeruginosa

    No full text
    Carbon metabolism plays an important role in bacterial physiology and pathogenesis. The type III secretion system (T3SS) of Pseudomonas aeruginosa is a virulence factor that contributes to acute infections. It has been demonstrated that bacterial metabolism affects the T3SS. Meanwhile, expression of T3SS genes is negatively regulated by the small RNAs RsmY and RsmZ. In this study, we studied the relationship between the dihydrolipoamide acetyltransferase gene aceF and the T3SS. Our results reveal an upregulation of RsmY and RsmZ in the aceF mutant, which represses the expression of the T3SS genes. Meanwhile, the aceF mutant is more tolerant to hydrogen peroxide. We demonstrate that the expression levels of the catalase KatB and the alkyl hydroperoxide reductase AhpB are increased in the aceF mutant. The simultaneous deletion of rsmY and rsmZ in the aceF mutant restored the expression levels of katB and ahpB, as well as bacterial susceptibility to hydrogen peroxide. Thus, we identify a novel role of AceF in the virulence and oxidative response of P. aeruginosa

    PrPC has nucleic acid chaperoning properties similar to the nucleocapsid protein of HIV-1.

    No full text
    International audienceThe function of the cellular prion protein (PrPC) remains obscure. Studies suggest that PrPC functions in several processes including signal transduction and Cu2+ metabolism. PrPC has also been established to bind nucleic acids. Therefore we investigated the properties of PrPC as a putative nucleic acid chaperone. Surprisingly, PrPC possesses all the nucleic acid chaperoning properties previously specific to retroviral nucleocapsid proteins. PrPC appears to be a molecular mimic of NCP7, the nucleocapsid protein of HIV-1. Thus PrPC, like NCP7, chaperones the annealing of tRNA(Lys) to the HIV-1 primer binding site, the initial step of retrovirus replication. PrPC also chaperones the two DNA strand transfers required for production of a complete proviral DNA with LTRs. Concerning the functions of NCP7 during budding, PrPC also mimices NCP7 by dimerizing the HIV-1 genomic RNA. These data are unprecedented because, although many cellular proteins have been identified as nucleic acid chaperones, none have the properties of retroviral nucleocapsid proteins

    PrPC has nucleic acid chaperoning properties similar to the nucleocapsid protein of HIV-1.

    No full text
    International audienceThe function of the cellular prion protein (PrPC) remains obscure. Studies suggest that PrPC functions in several processes including signal transduction and Cu2+ metabolism. PrPC has also been established to bind nucleic acids. Therefore we investigated the properties of PrPC as a putative nucleic acid chaperone. Surprisingly, PrPC possesses all the nucleic acid chaperoning properties previously specific to retroviral nucleocapsid proteins. PrPC appears to be a molecular mimic of NCP7, the nucleocapsid protein of HIV-1. Thus PrPC, like NCP7, chaperones the annealing of tRNA(Lys) to the HIV-1 primer binding site, the initial step of retrovirus replication. PrPC also chaperones the two DNA strand transfers required for production of a complete proviral DNA with LTRs. Concerning the functions of NCP7 during budding, PrPC also mimices NCP7 by dimerizing the HIV-1 genomic RNA. These data are unprecedented because, although many cellular proteins have been identified as nucleic acid chaperones, none have the properties of retroviral nucleocapsid proteins
    corecore