258 research outputs found

    Higgs production in association with bottom quarks

    Get PDF
    We study the production of a Higgs boson in association with bottom quarks in hadronic collisions, and present phenomenological predictions relevant to the 13 TeV LHC. Our results are accurate to the next-to-leading order in QCD, and matched to parton showers through the MC@NLO method; thus, they are fully differential and based on unweighted events, which we shower by using both Herwig++ and Pythia8. We perform the computation in both the four-flavour and the five-flavour schemes, whose results we compare extensively at the level of exclusive observables. In the case of the Higgs transverse momentum, we also consider the analytically-resummed cross section up to the NNLO+NNLL accuracy. In addition, we analyse at O(αS3){\cal O}(\alpha_S^3) the effects of the interference between the bbˉHb\bar{b}H and gluon-fusion production modes.Comment: 33 pages, 17 figure

    Selbstbestimmung und Selbstverständnis: Themenschwerpunkte im Umgang mit der Patientenverfügung

    Full text link

    Effect of inhaled nitric oxide on pulmonary function in cystic fibrosis

    Get PDF
    AbstractConcentrations of nitric oxide (NO) have been found to be reduced in both the upper and lower airway of patients with cystic fibrosis (CF). As NO modulates bronchomuscular tone, low NO levels may contribute to the obstructive lung disease in these patients. To assess whether increasing inspiratory NO concentrations has any impact on lung function, we have studied 13 CF patients aged 14–38 years in a clinically stable condition and nine healthy controls. NO was applied via a mixing chamber for 5 min with NO concentrations of 100 parts per billion, 1 and 40 parts per million. Spirometry was performed at baseline and after inhalation on each occasion.There were no clinical side-effects at any NO concentration and no changes in oxygen saturation were observed. Lung function remained unchanged in all subjects throughout the study period. Sputum nitrate and nitrite concentrations before and after inhalation of high NO concentrations (40 ppm) in eight CF patients did not show any significant changes, even though a tendency to higher nitrate levels was observed (399 ± 231 vs. 556 ± 474 μmoll−1). Therefore, inhaled NO at either the physiological levels present in the upper airway of normal individuals or those used therapeutically to treat pulmonary hypertension has no immediate effect on bronchomuscular tone in patients with cystic fibrosis

    NNLO QCD + NLO EW with Matrix+OpenLoops: precise predictions for vector-boson pair production

    Get PDF
    We present the first combination of NNLO QCD and NLO EW corrections for vector-boson pair production at the LHC. We consider all final states with two, three and four charged leptons, including resonant and non-resonant diagrams, spin correlations and off-shell effects. Detailed predictions are discussed for three representative channels corresponding to W+W−, W±Z and Z Z production. Both QCD and EW corrections are very significant, and the details of their combination can play a crucial role to achieve the level of precision demanded by experimental analyses. In this context we point out nontrivial issues that arise at large transverse momenta, where the EW corrections are strongly enhanced by Sudakov logarithms and the QCD corrections can feature so-called giant K -factors. Our calculations have been carried out in the Matrix+OpenLoops framework and can be extended to the production of an arbitrary colour singlet in hadronic collisions, provided that the required two-loop QCD amplitudes are available. Combined NNLO QCD and NLO EW predictions for the full set of massive diboson processes will be made publicly available in the next release of Matrix and will be instrumental in advancing precision diboson studies and new-physics searches at the LHC and future hadron colliders

    The Functional Form of Angular Forces around Transition Metal Ions in Biomolecules

    Full text link
    A method for generating angular forces around σ\sigma-bonded transition metal ions is generalized to treat π\pi-bonded configurations. The theoretical approach is based on an analysis of a ligand-field Hamiltonian based on the moments of the electron state distribution. The functional forms that are obtained involve a modification of the usual expression of the binding energy as a sum of ligand-ligand interactions, which however requires very little increased in CPU time. The angular interactions have simple forms involving sin and cos functions, whose relative weights depend on whether the ligands are σ\sigma- or π\pi-bonded. They describe the ligand-field stabilization energy to an accuracy of about 10%. The resulting force field is used to model the structure of small clusters, including fragments of the copper blue protein structure. Large deviations from the typical square copper coordination are found when π\pi-bonded ligands are present.Comment: Latex source, 9 postscript figure

    Optimistic distributionally robust optimization for nonparametric likelihood approximation

    Get PDF
    The likelihood function is a fundamental component in Bayesian statistics. However, evaluating the likelihood of an observation is computationally intractable in many applications. In this paper, we propose a non-parametric approximation of the likelihood that identifies a probability measure which lies in the neighborhood of the nominal measure and that maximizes the probability of observing the given sample point. We show that when the neighborhood is constructed by the Kullback-Leibler divergence, by moment conditions or by the Wasserstein distance, then our optimistic likelihood can be determined through the solution of a convex optimization problem, and it admits an analytical expression in particular cases. We also show that the posterior inference problem with our optimistic likelihood approximation enjoys strong theoretical performance guarantees, and it performs competitively in a probabilistic classification task

    Planning with Information-Processing Constraints and Model Uncertainty in Markov Decision Processes

    Full text link
    Information-theoretic principles for learning and acting have been proposed to solve particular classes of Markov Decision Problems. Mathematically, such approaches are governed by a variational free energy principle and allow solving MDP planning problems with information-processing constraints expressed in terms of a Kullback-Leibler divergence with respect to a reference distribution. Here we consider a generalization of such MDP planners by taking model uncertainty into account. As model uncertainty can also be formalized as an information-processing constraint, we can derive a unified solution from a single generalized variational principle. We provide a generalized value iteration scheme together with a convergence proof. As limit cases, this generalized scheme includes standard value iteration with a known model, Bayesian MDP planning, and robust planning. We demonstrate the benefits of this approach in a grid world simulation.Comment: 16 pages, 3 figure

    Angular Forces Around Transition Metals in Biomolecules

    Full text link
    Quantum-mechanical analysis based on an exact sum rule is used to extract an semiclassical angle-dependent energy function for transition metal ions in biomolecules. The angular dependence is simple but different from existing classical potentials. Comparison of predicted energies with a computer-generated database shows that the semiclassical energy function is remarkably accurate, and that its angular dependence is optimal.Comment: Tex file plus 4 postscript figure

    Solving ill-posed bilevel programs

    No full text
    This paper deals with ill-posed bilevel programs, i.e., problems admitting multiple lower-level solutions for some upper-level parameters. Many publications have been devoted to the standard optimistic case of this problem, where the difficulty is essentially moved from the objective function to the feasible set. This new problem is simpler but there is no guaranty to obtain local optimal solutions for the original optimistic problem by this process. Considering the intrinsic non-convexity of bilevel programs, computing local optimal solutions is the best one can hope to get in most cases. To achieve this goal, we start by establishing an equivalence between the original optimistic problem an a certain set-valued optimization problem. Next, we develop optimality conditions for the latter problem and show that they generalize all the results currently known in the literature on optimistic bilevel optimization. Our approach is then extended to multiobjective bilevel optimization, and completely new results are derived for problems with vector-valued upper- and lower-level objective functions. Numerical implementations of the results of this paper are provided on some examples, in order to demonstrate how the original optimistic problem can be solved in practice, by means of a special set-valued optimization problem

    Jet-veto in bottom-quark induced Higgs production at next-to-next-to-leading order

    Full text link
    We present results for associated Higgs+n-jet production in bottom quark annihilation, for n=0 and n>=1 at NNLO and NLO accuracy, respectively. We consider both the cases with and without b-tagging. Numerical results are presented for parameters relevant for experiments at the LHC.Comment: 27 pages, 13 figures, 8 table
    corecore