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Abstract

The likelihood function is a fundamental component in Bayesian statistics. How-
ever, evaluating the likelihood of an observation is computationally intractable
in many applications. In this paper, we propose a non-parametric approximation
of the likelihood that identifies a probability measure which lies in the neighbor-
hood of the nominal measure and that maximizes the probability of observing the
given sample point. We show that when the neighborhood is constructed by the
Kullback-Leibler divergence, by moment conditions or by the Wasserstein distance,
then our optimistic likelihood can be determined through the solution of a convex
optimization problem, and it admits an analytical expression in particular cases.
We also show that the posterior inference problem with our optimistic likelihood
approximation enjoys strong theoretical performance guarantees, and it performs
competitively in a probabilistic classification task.

1 Introduction

Bayesian statistics is a versatile mathematical framework for estimation and inference, which appli-
cations in bioinformatics [2], computational biology [47, 48], neuroscience [57], natural language
processing [30, 40], computer vision [26, 31], robotics [15], machine learning [34, 53], etc. A
Bayesian inference model is composed of an unknown parameter θ from a known parameter space
Θ, an observed sample point x from a sample space X ⊆ Rm, a likelihood measure (or conditional
density) p(·|θ) over X and a prior distribution π(·) over Θ. The key objective of Bayesian statistics
is the computation of the posterior distribution p(·|x) over Θ upon observing x.

Unfortunately, computing the posterior is a challenging task in practice. Bayes’ theorem, which
relates the posterior to the prior [49, Theorem 1.31], requires the evaluation of both the likelihood
function p(·|θ) and the evidence p(x). Evaluating the likelihood p(·|θ) at an observation x ∈ X is
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an intractable problem in many situations. For example, the statistical model may contain hidden
variables ζ , and the likelihood p(x|θ) can only be computed by marginalizing out the hidden variables
p(x|θ) =

∫
p(x, ζ|θ)dζ [38, pp. 322]. In the g-and-k model, the density function does not exist in

closed form and can only be expressed in terms of the derivatives of quantile functions, which implies
that p(x|θ) needs to be computed numerically for each individual observation x [23]. Likewise,
evaluating the evidence p(x) is intractable whenever the evaluation of the likelihood p(x|θ) is. To
avoid calculating p(x) in the process of constructing the posterior, the variational Bayes approach [9]
maximizes the evidence lower bound (ELBO), which is tantamount to solving

min
Q∈Q

KL(Q ‖ π)− EQ[log p(x|θ)], (1)

where KL(Q ‖ π) denotes the Kullback-Leibler (KL) divergence from Q to π. One can show that if
the feasible set Q contains all probability measures supported on Θ, then the optimal solution Q?
of (1) coincides with the true posterior distribution. Consequently, inferring the posterior is equivalent
to solving the convex optimization problem (1) that depends only on the prior distribution π and the
likelihood p(x|θ). There are scalable algorithms to solve the ELBO maximization problem [24], and
the variational Bayes approach has been successfully applied in inference tasks [20, 21], reinforcement
learning [25, 36], dimensionality reduction [39] and training deep neural networks [27]. Nevertheless,
the variational Bayes approach requires both perfect knowledge and a tractable representation of the
likelihood p(x|θ), which is often not available in practice.

While the likelihood p(x|θ) may be intractable to compute, we can approximate p(x|θ) from available
data in many applications. For example, in the classification task where Θ = {θ1, . . . , θC} denotes
the class labels, the class conditional probabilities p(x|θi) and the prior distribution π(θi) can be
inferred from the training data, and a probabilistic classifier can be constructed by assigning x to
each class randomly under the posterior distribution [8, pp. 43]. Approximating the intractable
likelihood from available samples is also the key ingredient of approximate Bayesian computation
(ABC), a popular statistical method for likelihood-free inference that has gained widespread success
in various fields [3, 14, 54]. The sampling-based likelihood algorithm underlying ABC assumes that
we have access to a simulation device that can generate N i.i.d. samples x̂1, . . . , x̂N from p(·|θ), and
it approximates the likelihood p(x|θ) by the surrogate ph(x|θ) defined as

ph(x|θ) =

∫

X
Kh (d(x, x̂)) p(x̂|θ)dx̂ ≈ 1

N

N∑

j=1

Kh (d(x, x̂j)) , (2)

where Kh is a kernel function with kernel width h, d(·, ·) is a distance on X , and the approximation
is due to the reliance upon finitely many samples [43, 46].

In this paper, we propose an alternative approach to approximate the likelihood p(x|θ). We assume
that the sample space X is countable, and hence p(·|θ) is a probability mass function. We model the
decision maker’s nominal belief about p(·|θ) by a nominal probability mass function ν̂θ supported
on X , which in practice typically represents the empirical distribution supported on the (possibly
simulated) training samples. We then approximate the likelihood p(x|θ) by the optimal value of the
following non-parametric optimistic likelihood problem

sup
ν∈Bθ(ν̂θ)

ν(x), (3)

where Bθ(ν̂θ) is a set that contains all probability mass functions in the vicinity of ν̂θ. In the
distributionally robust optimization literature, the set Bθ(ν̂θ) is referred to as the ambiguity set
[4, 35, 56]. In contrast to the distributionally robust optimization paradigm, which would look for a
worst-case measure that minimizes the probability of observing x among all measures contained in
Bθ(ν̂θ), the optimistic likelihood problem (3) determines a best-case measure that maximizes this
quantity. Thus, problem (3) is closely related to the literature on practicing optimism upon facing
ambiguity, which has been shown to be beneficial in multi-armed bandit problems [12], planning
[37], classification [7], image denoising [22], Bayesian optimization [11, 52], etc.

The choice of the set Bθ(ν̂θ) in (3) directly impacts the performance of the optimistic likelihood
approach. In the limiting case where Bθ(ν̂θ) approaches a singleton {ν̂θ}, the optimistic likelihood
problem recovers the nominal estimate ν̂θ(x). Since this approximation is only reasonable when
ν̂θ(x) > 0, which is often violated when ν̂θ is estimated from few training samples, a strictly
positive size of Bθ(ν̂θ) is preferred. Ideally, the shape of Bθ(ν̂θ) is chosen so that problem (3)
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is computationally tractable and at the same time offers a promising approximation quality. We
explore in this paper three different constructions of Bθ(ν̂θ): the Kullback-Leibler divergence [4], a
description based on moment conditions [17, 33] and the Wasserstein distance [29, 41, 44, 50, 51].

The contributions of this paper may be summarized as follows.

1. We show that when Bθ(ν̂θ) is constructed using the KL divergence, the optimistic likelihood (3)
reduces to a finite convex program, which in specific cases admits an analytical solution. However,
this approach does not satisfactorily approximate p(x|θ) for previously unseen samples x.

2. We demonstrate that when Bθ(ν̂θ) is constructed using moment conditions, the optimistic likeli-
hood (3) can be computed in closed form. However, since strikingly different distributions can
share the same lower-order moments, this approach is often not flexible enough to accurately
capture the tail behavior of ν̂θ.

3. We show that when Bθ(ν̂θ) is constructed using the Wasserstein distance, the optimistic like-
lihood (3) coincides with the optimal value of a linear program that can be solved using a
greedy heuristics. Interestingly, this variant of the optimistic likelihood results in a likelihood
approximation whose decay pattern resembles that of an exponential kernel approximation.

4. We use our optimistic likelihood approximation in the ELBO problem (1) for posterior inference.
We prove that the resulting posterior inference problems under the KL divergence and the Wasser-
stein distance enjoy strong theoretical guarantees, and we illustrate their promising empirical
performance in numerical experiments.

While this paper focuses on the non-parametric approximation of the likelihood p(x|θ), we emphasize
that the optimistic likelihood approach can also be applied in the parametric setting. More specifically,
if p(·|θ) belongs to the family of Gaussian distributions, then the optimistic likelihood approximation
can be solved efficiently using geodesically convex optimization [42].

The remainder of the paper is structured as follows. We study the optimistic likelihood problem under
the KL ambiguity set, under moment conditions and under the Wasserstein distance in Sections 2–4,
respectively. Section 5 provides a performance guarantee for the posterior inference problem using
our optimistic likelihood. All proofs and additional material are relegated to the Appendix. In
Sections 2–4, the development of the theoretical results is generic, and hence the dependence of ν̂θ
and Bθ(ν̂θ) on θ is omitted to avoid clutter.

Notation. We denote byM(X ) the set of all probability mass functions supported on X , and we
refer to the support of ν ∈ M(X ) as supp(ν). For any z ∈ X , δz is the delta-Dirac measure at z.
For any N ∈ N+, we use [N ] to denote the set {1, . . . , N}. 1x(·) is the indicator function at x, i.e.,
1x(ξ) = 1 if ξ = x, and 1x(ξ) = 0 otherwise.

2 Optimistic Likelihood using the Kullback-Leibler Divergence

We first consider the optimistic likelihood problem where the ambiguity set is constructed using the
KL divergence. The KL divergence is the starting point of the ELBO maximization problem (1), and
thus it is natural to explore its potential in our likelihood approximation.
Definition 2.1 (KL divergence). Let ν1, ν2 be two probability mass functions on X such that ν1 is
absolutely continuous with respect to ν2. The KL divergence between ν1 and ν2 is defined as

KL(ν1 ‖ ν2) ,
∑

z∈X
f (ν1(z)/ν2(z)) ν2(z),

where f(t) = t log(t)− t+ 1.

We now consider the KL divergence ball BKL(ν̂, ε) centered at the empirical distribution ν̂ with
radius ε ≥ 0, that is,

BKL(ν̂, ε) = {ν ∈M(X ) : KL(ν̂ ‖ ν) ≤ ε} . (4)
Moreover, we assume that the nominal distribution ν̂ is supported on N distinct points x̂1, . . . , x̂N ,
that is, ν̂ =

∑
j∈[N ] ν̂jδx̂j with ν̂j > 0 ∀j ∈ [N ] and

∑
j∈[N ] ν̂j = 1.

The set BKL(ν̂, ε) is not weakly compact because X can be unbounded, and thus the existence
of a probability measure that optimizes the optimistic likelihood problem (3) over the feasible set

3



BKL(ν̂, ε) is not immediate. The next proposition asserts that the optimal solution exists, and it
provides structural insights about the support of the optimal measure.

Proposition 2.2 (Existence of optimizers; KL ambiguity). For any ε ≥ 0 and x ∈ X , there exists a
measure ν?KL ∈ BKL(ν̂, ε) such that

sup
ν∈BKL(ν̂,ε)

ν(x) = ν?KL(x) (5)

Moreover, ν?KL is supported on at most N + 1 points satisfying supp(ν?KL) ⊆ supp(ν̂) ∪ {x}.

Proposition 2.2 suggests that the optimistic likelihood problem (5), inherently an infinite dimensional
problem whenever X is infinite, can be formulated as a finite dimensional problem. The next theorem
provides a finite convex programming reformulation of (5).

Theorem 2.3 (Optimistic likelihood; KL ambiguity). For any ε ≥ 0 and x ∈ X ,

• if x ∈ supp(ν̂), then problem (5) can be reformulated as the finite convex optimization problem

sup
ν∈BKL(ν̂,ε)

ν(x) = max
{∑

j∈[N ] yj1x(x̂j) : y ∈ RN++,
∑
j∈[N ] ν̂j log (ν̂j/yj) ≤ ε, e>y = 1

}
,

where e is the vector of all ones;

• if x 6∈ supp(ν̂), then problem (5) has the optimal value 1− exp (−ε).

Theorem 2.3 indicates that the determining factor in the KL optimistic likelihood approximation is
whether the observation x belongs to the support of the nominal measure ν̂ or not. If x 6∈ supp(ν̂),
then the optimal value of (5) does not depend on x, and the KL divergence approach assigns a
flat likelihood. Interestingly, in Appendix B.2 we prove a similar result for the wider class of f -
divergences, which contains the KL divergence as a special case. While this flat likelihood behavior
may be useful in specific cases, one would expect the relative distance of x to the atoms of ν̂ to
influence the optimal value of the optimistic likelihood problem, similar to the neighborhood-based
intuition reflected in the kernel approximation approach. Unfortunately, the lack of an underlying
metric in its definition implies that the f -divergence family cannot capture this intuition, and thus f -
divergence ambiguity sets are not an attractive option to approximate the likelihood of an observation
x that does not belong to the support of the nominal measure ν̂.

Remark 2.4 (On the order of the measures). An alternative construction of the KL ambiguity set,
which has been widely used in the literature [4], is

B̂KL(ν̂, ε) = {ν ∈M(X ) : KL(ν ‖ ν̂) ≤ ε} ,
where the two measures ν and ν̂ change roles. However, in this case the KL divergence imposes that
all ν ∈ B̂KL(ν̂, ε) are absolutely continuous with respect to ν̂. In particular, if x 6∈ supp(ν̂), then
ν(x) = 0 for all ν ∈ B̂KL(ν̂, ε), and B̂KL(ν̂, ε) is not able to approximate the likelihood of x in a
meaningful way.

3 Optimistic Likelihood using Moment Conditions

In this section we study the optimistic likelihood problem (3) when the ambiguity set B(ν̂) is specified
by moment conditions. For tractability purposes, we focus on ambiguity sets BMV(ν̂) that contain
all distributions which share the same mean µ̂ and covariance matrix Σ̂ ∈ Sm++ with the nominal
distribution ν̂. Formally, this moment ambiguity set BMV(ν̂) can be expressed as

BMV(ν̂) =
{
ν ∈M(X ) : Eν [x̃] = µ̂, Eν [x̃x̃>] = Σ̂ + µ̂µ̂>

}
.

The optimistic likelihood (3) over the ambiguity set BMV(ν̂) is a moment problem that is amenable to
a well-known reformulation as a polynomial time solvable semidefinite program [6]. Surprisingly,
in our case the optimal value of the optimistic likelihood problem is available in closed form. This
result was first discovered in [32], and a proof using optimization techniques can be found in [5].
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Theorem 3.1 (Optimistic likelihood; mean-variance ambiguity [5, 32]). Suppose that ν̂ has the mean
vector µ̂ ∈ Rm and the covariance matrix Σ̂ ∈ Sm++. For any x ∈ X , the optimistic likelihood
problem (3) over the moment ambiguity set BMV(ν̂) has the optimal value

sup
ν∈BMV(ν̂)

ν(x) =
1

1 + (x− µ̂)>Σ̂−1(x− µ̂)
∈ (0, 1]. (6)

The optimal value (6) of the optimistic likelihood problem depends on the location of the observed
sample point x, and hence the moment ambiguity set captures the behavior of the likelihood function
in a more realistic way than the KL divergence ambiguity set from Section 2. Moreover, the moment
ambiguity set BMV(ν̂) does not depend on any hyper-parameters that need to be tuned. However,
since the construction of BMV(ν̂) only relies on the first two moments of the nominal distribution
ν̂, it fails to accurately capture the tail behavior of ν̂, see Appendix B.3. This motivates us to look
further for an ambiguity set that faithfully accounts for the tail behavior of ν̂.

4 Optimistic Likelihood using the Wasserstein Distance

We now study a third construction for the ambiguity set B(ν̂), which is based on the type-1 Wasserstein
distance (also commonly known as the Monge-Kantorovich distance), see [55]. Contrary to the KL
divergence, the Wasserstein distance inherently depends on the ground metric of the sample space X .

Definition 4.1 (Wasserstein distance). The type-1 Wasserstein distance between two measures
ν1, ν2 ∈M(X ) is defined as

W(ν1, ν2) , inf
λ∈Λ(ν1,ν2)

Eλ [d(x1, x2)] ,

where Λ(ν1, ν2) denotes the set of all distributions on X × X with the first and second marginal
distributions being ν1 and ν2, respectively, and d is the ground metric of X .

The Wasserstein ball BW(ν̂, ε) centered at the nominal distribution ν̂ with radius ε ≥ 0 is

BW(ν̂, ε) = {ν ∈M(X ) : W(ν, ν̂) ≤ ε} . (7)

We first establish a structural result for the optimistic likelihood problem over the Wasserstein
ambiguity set. This is the counterpart to Proposition 2.2 for the KL divergence.

Proposition 4.2 (Existence of optimizers; Wasserstein ambiguity). For any ε ≥ 0 and x ∈ X , there
exists a measure ν?W ∈ BW(ν̂, ε) such that

sup
ν∈BW(ν̂,ε)

ν(x) = ν?W(x). (8)

Furthermore, ν?W is supported on at most N + 1 points satisfying supp(ν?W) ⊆ supp(ν̂) ∪ {x}.

Leveraging Proposition 4.2, we can show that the optimistic likelihood estimate over the Wasserstein
ambiguity set coincides with the optimal value of a linear program whose number of decision variables
equals the number of atoms N of the nominal measure ν̂.

Theorem 4.3 (Optimistic likelihood; Wasserstein ambiguity). For any ε ≥ 0 and x ∈ X , problem (8)
is equivalent to the linear program

sup
ν∈BW(ν̂,ε)

ν(x) = max




∑

j∈[N ]

Tj : T ∈ RN+ ,
∑

j∈[N ]

d(x, x̂j)Tj ≤ ε, Tj ≤ ν̂j ∀j ∈ [N ]



 . (9)

The currently best complexity bound for solving a general linear program with N decision variables
is O(N2.37) [13], which may be prohibitive when N is large. Fortunately, the linear program (9) can
be solved to optimality using a greedy heuristics in quasilinear time.

Proposition 4.4 (Optimal solution via greedy heuristics). The linear program (9) can be solved to
optimality by a greedy heuristics in time O(N logN).
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Figure 1: Comparison between the Wasserstein
approximation (ε = 0.2) and the sample average
kernel approximations (h = 1) of p(x|θ).

Example 4.5 (Qualitative comparison with kernel
methods). Let m = 1, d(x, x̂) = ‖x − x̂‖1 and
ν̂ = 0.5δ−1+0.5δ1. Figure 1 compares the approx-
imation of p(x|θ) by the Wasserstein optimistic
likelihood with those of the finite sample kernel
approximations (2) with Kh(u) = K

(
h−1u

)
,

where the Kernel K is exponential with K(y) =
exp(−y), uniform with K(y) = 1[|y| ≤ 1] or
Epanechnikov with K(y) = 3/4(1 − y2)1[|y| ≤
1]. While both the uniform and the Epachnech-
nikov kernel may produce an approximation value
of 0 when x is far away from the support of ν̂, the
Wasserstein approximation always returns a pos-
itive likelihood when ε > 0 (see Corollary A.2).
Qualitatively, the Wasserstein approximation ex-
hibits a decay pattern similar to that of the finite
sample average exponential kernel approximation.

On one hand, the similarity between the optimistic likelihood over the Wasserstein ambiguity set
and the exponential kernel approximation suggests that the kernel approximation can potentially
be interpreted in the light of our optimistic distributionally robust optimization framework. On the
other hand, and perhaps more importantly, this similarity suggests that there are possibilities to
design novel and computationally efficient kernel-like approximations using advanced optimization
techniques. Even though the assumption that p(·|θ) is a probability mass function is fundamental for
our approximation, we believe that our approach can be utilized in the ABC setting even when p(·|θ)
is a probability density function. We leave these ideas for future research.

Appendix B.3 illustrates further how the Wasserstein ambiguity set offers a better tail approximation
of the nominal measure ν̂ than the ambiguity set based on moment conditions. Interestingly, the
Wasserstein approximation can also be generalized to approximate the log-likelihood of a batch of
i.i.d. observations, see Appendix B.4

5 Application to the ELBO Problem

Motivated by the fact that the likelihood p(x|θ) is intractable to compute in many practical appli-
cations, we use our optimistic likelihood approximation (3) as a surrogate for p(x|θ) in the ELBO
problem (1). In this section, we will focus on the KL divergence and the Wasserstein ambiguity sets,
and we will impose the following assumptions.
Assumption 5.1 (Finite parameter space). We assume that Θ = {θ1, . . . , θC} for some C ≥ 2.
Assumption 5.2 (I.i.d. sampling and empirical distribution). For every i ∈ [C], we haveNi i.i.d. sam-
ples x̂ij , j ∈ [Ni], from the conditional probability p(·|θi). Furthermore, each nominal distribution
ν̂i is given by the empirical distribution ν̂Nii = N−1

i

∑
j∈[Ni]

δx̂ij on the samples x̂ij .

Assumption 5.1 is necessary for our approach because we approximate p(x|θ) separately for every
θ ∈ Θ. Under this assumption, the prior distribution π can be expressed by the C-dimensional vector
π ∈ R+, and the ELBO program (1) becomes the finite-dimensional convex optimization problem

J true = min
q∈Q

∑

i∈[C]

qi(log qi − log πi)−
∑

i∈[C]

qi log p(x|θi), (10)

where by a slight abuse of notation,Q is now a subset of the C-dimensional simplex. Assumption 5.2,
on the other hand, is a standard assumption in the nonparametric setting, and it allows us to study the
statistical properties of our optimistic likelihood approximation.

We approximate p(x|θi) for each θi by the optimal value of the optimistic likelihood problem (3):

p(x|θi) ≈ sup
νi∈B

Ni
i (ν̂

Ni
i )

νi(x) (11)

Here, BNii (ν̂Nii ) is the KL divergence or Wasserstein ambiguity set centered at the empirical distri-
bution ν̂Nii . Under Assumptions 5.1 and 5.2, a surrogate model of the ELBO problem (1) is then
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obtained using the approximation (11) as

ĴBN = min
q∈Q

∑

i∈[C]

qi(log qi − log πi)−
∑

i∈[C]

qi log


 sup
νi∈B

Ni
i (ν̂

Ni
i )

νi(x)


 , (12)

where we use BN to denote the collection of ambiguity sets
{
BNii (ν̂Nii )

}C
i=1

with N =
∑
iNi.

We now study the statistical properties of problem (12). We first present an asymptotic guarantee for
the KL divergence. Towards this end, we define the disappointment as P∞(J true < ĴBN ).
Theorem 5.3 (Asymptotic guarantee; KL ambiguity). Suppose that Assumptions 5.1 and 5.2 hold.
For each i ∈ [C], let BNii (ν̂Nii ) = BKL(ν̂Nii , εi) for some εi > 0, and set n , min{N1, . . . , NC}.
We then have

lim sup
n→∞

1

n
logP∞(J true < ĴBN ) ≤ − min

i∈[C]
εi < 0.

Theorem 5.3 shows that as the number of training samples Ni for each i ∈ [C] grows, the disappoint-
ment decays exponentially at a rate of at least mini εi.

We next study the statistical properties of problem (12) when each BNii (ν̂Nii ) is a Wasserstein ball.
To this end, we additionally impose the following assumption, which essentially requires that the tail
of each distribution p(·|θi), i ∈ [C], decays at an exponential rate.
Assumption 5.4 (Light-tailed conditional distribution). For each i ∈ [C], there exists an exponent
ai > 1 such that Ai , E[exp(‖x‖ai)] <∞, where the expectation is taken with respect to p(·|θi).
Theorem 5.5 (Finite sample guarantee; Wasserstein ambiguity). Suppose that Assumptions 5.1,
5.2 and 5.4 hold, and fix any β ∈ (0, 1). Assume that m 6= 2 and that BNii (ν̂Nii ) =

BW(ν̂Nii , εi(β,C,Ni)) for every i ∈ [C] with

εi(β,C,Ni) ,





(
log(ki1Cβ

−1)
ki2Ni

)1/max{m,2}
if Ni ≥ log(ki1)Cβ−1

ki2
,

(
log(ki1Cβ

−1)
ki2Ni

)1/ai
if Ni <

log(ki1)Cβ−1

ki2
,

and ki1, ki2 are positive constants that depend on ai, Ai andm. We then have PN
(
J true < ĴBN

)
≤ β.

Theorem 5.5 provides a finite sample guarantee for the disappointment of problem (12) under a
specific choice of radii for the Wasserstein balls.
Theorem 5.6 (Asymptotic guarantee for Wasserstein). Suppose that Assumptions 5.1, 5.2 and
5.4 hold. For each i ∈ [C], let βNi ∈ (0, 1) be a sequence such that

∑∞
Ni=1 βNi < ∞ and

BNii (ν̂Nii ) = BW(ν̂Nii , εi(βN , C,Ni)), where εi is defined as in Theorem 5.5. Then ĴBN →
J true as N1, . . . , NC →∞ almost surely.

Theorem 5.6 offers an asymptotic guarantee which asserts that as the numbers of training samples Ni
grow, the optimal value of (12) converges to that of the ELBO problem (10).

6 Numerical Experiments

We first showcase the performance guarantees from the previous section on a synthetic dataset
in Section 6.1. Afterwards, Section 6.2 benchmarks the performance of the different likelihood
approximations in a probabilistic classification task on standard UCI datasets. The source code,
including our algorithm and all tests implemented in Python, are available from https://github.
com/sorooshafiee/Nonparam_Likelihood.

6.1 Synthetic Dataset: Beta-Binomial Inference

We consider the beta-binomial problem in which the prior π, the likelihood p(x|θ), and the posterior
distribution q(θ|x) have the following forms:

π(θ) = Beta(θ|α, β), p(x|θ) = Bin(x|M, θ), q(θ|x) = Beta(θ|x+ α,M − x+ β)

7
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Figure 2: Average KL divergence between q̂ that solves (12) and
the discretized posterior qdiscretize(·|x) as a function of ε and Ni.
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Figure 3: Optimally tuned perfor-
mance of different approximation
schemes with varying Ni.

We emphasize that in this setting, the posterior distribution is known in closed form, and the main
goal is to study the properties of the optimistic ELBO problem (12) and the convergence of the
solution of problem (12) to the true posterior distribution. We impose a uniform prior distribution π
by setting α = β = 1. The finite parameter space Θ = {θ1, . . . , θC} contains C = 20 equidistant
discrete points in the range (0, 1). For simplicity, we set N1 = . . . = NC in this experiment.

We conduct the following experiment for different training set sizesNi ∈ {1, 2, 4, 8, 10} and different
ambiguity set radii ε. For each parameter setting, our experiment consists of 100 repetitions. In each
repetition, we randomly generate an observation x from a binomial distribution with M = 20 trials
and success probability θtrue = 0.6. We then find the distribution q̂ that solves problem (12) using
both the KL and the Wasserstein approximation. In a similar way, we find q̂ by solving (10), where
p(x|θ) is approximated using the exponential kernel of the likelihood (2) with varying kernel width.

We evaluate the quality of the computed posteriors q̂ from the different approximations based on the
KL divergences of q̂ to the true discretized posterior qdiscretize(θi|x) ∝ Beta(θi|x+ α,M − x+ β).
Figures 4(a) and 4(b) depict the average quality of q̂ with different radii. One can readily see that the
optimal size of the ambiguity set that minimizes KL(q̂ ‖ qdiscretize(·|x)) decreases as Ni increases for
both the KL and the Wasserstein approximation. Figure 3 depicts the performance of the optimally
tuned approximations with different sample sizes Ni. We notice that the optimistic likelihood over
the Wasserstein ambiguity set is comparable to the exponential kernel approximation.

6.2 Real World Dataset: Classification

We now consider a probabilistic classification setting with C = 2 classes. For each class i = 1, 2, we
have access to Ni observations denoted by {x̂ij}j∈[Ni]. The nominal class-conditional probability
distributions are the empirical measures, that is, ν̂i = N−1

i

∑
j∈[Ni]

δx̂ij for i = 1, 2. The prior
distribution π is also estimated from the training data as π(θi) = Ni/N , where N = N1 +N2 is the
total number of training samples. Upon observing a test sample x, the goal is to compute the posterior
distribution q̂ by solving the optimization problem (12) using different approximation schemes. We
subsequently use the posterior q̂ as a probabilistic classifier. In this experiment, we exclude the KL
divergence approximation because x 6∈ supp(ν̂i) most of the time.

In our experiments involving the Wasserstein ambiguity set, we randomly select 75% of the available
data as training set and the remaining 25% as test set. We then use the training samples to tune the
radii εi ∈ {a

√
m10b : a ∈ {1, . . . , 9}, b ∈ {−3,−2,−1}}, i = 1, 2, of the Wasserstein balls by a

stratified 5-fold cross validation. For the moment based approximation, there is no hyper-parameter
to tune, and all data is used as training set. We compare the performance of the classifiers from
our optimistic likelihood approximation against the classifier selected by the exponential kernel
approximation as a benchmark.

Table 1 presents the results on standard UCI benchmark datasets. All results are averages across 10
independent trials. The table shows that our optimistic likelihood approaches often outperform the
exponential kernel approximation in classification tasks.

Acknowledgments We gratefully acknowledge financial support from the Swiss National Science
Foundation under grant BSCGI0_157733 as well as the EPSRC grants EP/M028240/1, EP/M027856/1
and EP/N020030/1.
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Table 1: Average area under the precision-recall curve for various UCI benchmark datasets. Bold
numbers correspond to the best performances.

Exponential Moment Wasserstein

Banknote Authentication 99.05 99.99 100.00
Blood Transfusion 64.91 71.28 68.23
Breast Cancer 97.58 99.26 97.99
Climate Model 93.80 81.94 93.40
Cylinder 76.74 75.00 86.23
Fourclass 99.95 82.77 100.00
German Credit 67.58 75.50 75.11
Haberman 70.82 70.20 71.10
Heart 78.77 86.87 75.86
Housing 75.62 81.89 82.04
ILPD 71.54 72.95 69.88
Ionosphere 91.02 97.05 98.79
Mammographic Mass 83.46 86.53 87.86
Pima 79.61 82.37 80.48
QSAR 84.44 90.85 90.21
Seismic Bumps 74.81 75.68 65.89
Sonar 85.66 83.49 93.85
Thoracic Surgery 54.84 64.73 56.32

Appendix A Proofs

A.1 Proofs of Section 2

The proof of Proposition 2.2 relies on the following auxiliary lemma, which we state first.
Lemma A.1 (Upper semicontinuity). For any x ∈ X ⊂ Rm, the functional F (ν) = ν(x) is upper
semicontinuous overM(X ).

Proof. We denote by 1x(·) the indicator function at x, that is, 1x(ξ) = 1 if ξ = x and 1x(ξ) = 0
otherwise. By definition, F (ν) =

∫
1xdν. Moreover, let {νk}k∈N be a sequence of probability

measures converging weakly to ν ∈ M(X ). Since 1x(·) is upper semicontinuous, the weak
convergence of νk implies that

lim sup
k→∞

F (νk) = lim sup
k→∞

∫
1xdνk ≤

∫
1xdν = F (ν),

which in turn shows that the functional F is upper semicontinuous.

Proof of Proposition 2.2. If ε = 0, the ball BKL(ν̂, ε) contains a singleton ν̂ and the claim holds
trivially. We can thus assume that ε > 0. Since BKL(ν̂, ε) is not necessarily weakly compact, the
existence of the optimal measure ν? is not trivial. To show that ν? exists, we first establish that

sup
ν∈BKL(ν̂,ε)

ν(x) = sup
ν∈BKL(ν̂,ε)

supp(ν)⊆(Ŝ∪{x})

ν(x), (A.1)

where Ŝ = supp(ν̂). To establish (A.1), it suffices to show that for any ν̄ ∈ BKL(ν̂, ε) that assigns a
non-zero probability on X\(Ŝ ∪ {x}), there exists ν′ ∈ BKL(ν̂, ε) satisfying supp(ν′) ⊆ Ŝ ∪ {x}
such that ν′ attains a higher objective value than ν̄, that is, ν′(x) > ν̄(x). Because ν̄ assigns a
non-zero probability to X\(Ŝ ∪ {x}), we have

0 < κ ,
∑

z∈X\(Ŝ∪{x})

ν̄(z) ≤ 1.

We now construct the measure ν′ explicitly. Assume that x 6∈ Ŝ. In this case, consider the discrete
measure ν′ supported on Ŝ ∪ {x} given by

ν′(x) = ν̄(x) + κ and ν′(x̂j) = ν̄(x̂j) ∀j ∈ [N ].

9



Intuitively, ν′ keeps the probability of ν̄ on Ŝ, and it gathers the probability everywhere else and
puts that mass onto x. We first show that ν′ is a probability measure. Indeed, since κ > 0 and ν̄ is a
probability measure, we have ν′ ≥ 0. Moreover, we find
∑

z∈X
ν′(z) =

∑

j∈[N ]

ν̄(x̂j) + ν̄(x) + κ =
∑

j∈[N ]

ν̄(x̂j) + ν̄(x) +
∑

z∈X\(Ŝ∪{x})

ν̄(z) =
∑

z∈X
ν̄(z) = 1,

where the first equality exploits the definition of ν̄, and the second equality follows from the definition
of κ. Thus we conclude that ν′ is a probability measure. We now proceed to show that ν′ satisfies the
KL divergence constraint. Indeed, we have

KL(ν̂ ‖ ν′) =
∑

z∈X
f

(
ν̂(z)

ν′(z)

)
ν′(z)

=
∑

j∈[N ]

f

(
ν̂j

ν′(x̂j)

)
ν′(x̂j) + ν′(x) (A.2a)

=
∑

j∈[N ]

f

(
ν̂j

ν̄(x̂j)

)
ν̄(x̂j) + ν̄(x) + κ (A.2b)

=
∑

j∈[N ]

f

(
ν̂j

ν̄(x̂j)

)
ν̄(x̂j) + ν̄(x) +

∑

z∈X\(Ŝ∪{x})

f

(
ν̂(z)

ν̄(z)

)
ν̄(z) (A.2c)

=
∑

z∈X
f

(
ν̂(z)

ν̄(z)

)
ν̄(z) ≤ ε. (A.2d)

Equality (A.2a) holds because f(0) = 1 for the function f defined in Definition 2.1 and supp(ν′) ⊆
Ŝ ∪ {x}. Equality (A.2b) follows from the construction of ν′, and equality (A.2c) holds due to
the definition of κ and the fact that f(0) = 1. Finally, the inequality in (A.2d) follows from
the feasibility of ν̄, and it implies that ν′ ∈ BKL(ν̂, ε). Furthermore, because κ > 0, we have
ν′(x) = ν̄(x) + κ > ν̄(x) which asserts that ν̄ is strongly dominated by ν′, and thus ν̄ cannot be an
optimal measure.

Consider now the case x ∈ Ŝ. Without loss of generality, we assume that x = x̂N . In this case, it
suffices to consider ν̄ satisfying ν̄(x̂N ) ≥ ν̂N because any ν̄ with ν̄(x̂N ) < ν̂N is already dominated
by the nominal measure ν̂. Since κ > 0 and ν̄(x̂N ) ≥ ν̂N , there must exist K ∈ [N − 1] atoms
denoted without loss of generality by {x̂1, . . . , x̂K} that satisfy ν̄(x̂j) < ν̂j for all k ∈ [K]. Due to
the continuity of the function f , there exists ε̄ ∈ (0, κ) that satisfies

f

(
ν̂N

ν̄(x̂N ) + ε̄

)
(ν̄(x̂N ) + ε̄) ≤ f

(
ν̂N

ν̄(x̂N )

)
ν̄(x̂N ) + κ.

We now consider the following measure ν′ supported on Ŝ:

ν′(x̂j) =





ν̄(x̂j) + (κ− ε̄)× (ν̂j − ν̄(x̂j))/
∑
k∈[K](ν̂k − ν̄(x̂k)) ∀j ∈ [K],

ν̄(x̂j) ∀j ∈ ([N − 1]\[K]),
ν̄(x̂N ) + ε̄ j = N.

We can verify that ν′ is a probability measure supported on Ŝ and that ν′(x̂N ) > ν̄(x̂N ). Furthermore,
we have

KL(ν̂ ‖ ν′) =
∑

j∈[N ]

f

(
ν̂j

ν′(x̂j)

)
ν′(x̂j)

=
∑

j∈[K]

f

(
ν̂j

ν′(x̂j)

)
ν′(x̂j) +

∑

j∈([N−1]\[K])

f

(
ν̂j

ν′(x̂j)

)
ν′(x̂j) + f

(
ν̂N

ν′(x̂N )

)
ν′(x̂N )

≤
∑

j∈[N ]

f

(
ν̂j

ν̄(x̂j)

)
ν̄(x̂j) + κ = KL(ν̂ ‖ ν̄) ≤ ε,

where the first inequality follows from the definition of ν′, the definition of ε̄, the fact that for any
ν̂j > 0 the function t 7→ tf(ν̂j/t) is non-increasing in t over the domain (0, ν̂j) and that 0 ≤
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ν̄(x̂j) < ν′(x̂j) ≤ ν̂j by construction. We have thus asserted that ν̄ is dominated by ν′ ∈ BKL(ν̂, ε),
and we conclude that (A.1) holds.

We now consider the supremum on the right hand side of (A.1). By Lemma A.1, the objective
function of (A.1) is upper semicontinuous. Furthermore, the feasible set

{
ν ∈M(X ) : supp(ν) ⊆ (Ŝ ∪ {x}), KL(ν̂ ‖ ν) ≤ ε

}

is weakly compact because it only contains measures supported on a finite set [1, Theorem 15.11].
By the Weierstrass maximum value theorem [1, Theorem 2.43], the supremum in (A.1) is attained
and there exists ν?KL ∈ BKL(ν̂, ε) such that

sup
ν∈BKL(ν̂,ε)

ν(x) = ν?KL(x).

This observation completes the proof.

Proof of Theorem 2.3. Consider first the case when x ∈ Ŝ, where Ŝ = supp(ν̂). As a result
of Proposition 2.2, the distribution that maximizes the probability at point x subject to the KL
divergence constraint will be supported on at most N points from the set Ŝ . The probability measures
of interest thus share the form

ν =
∑

j∈[N ]

yjδx̂j

for some y ∈ RN+ ,
∑
j∈[N ] yj = 1. The optimistic likelikood (5) satisfies

ν?KL(x) = sup




∑

j∈[N ]

yj1x(x̂j) : y ∈ RN++,
∑

j∈[N ]

ν̂j log

(
ν̂j
yj

)
≤ ε,

∑

j∈[N ]

yj = 1



 , (A.3)

which is a finite dimensional convex program in y.

Next, we consider the case where x 6∈ Ŝ . To this end, for any N ∈ N+, we denote by ∆N the simplex

∆N ,



y ∈ RN+ : 0 ≤ yj ≤ 1 ∀j ∈ [N ],

∑

j∈[N ]

yj ≤ 1



 . (A.4)

The relevant measures in BKL(ν̂, ε) then share the form

ν =
∑

j∈[N ]

yjδx̂j + (1−
∑

j∈[N ]

yj)δx

for some y ∈ ∆N . In this case, the optimistic likelihood 5 evaluates to

ν?KL(x) = max
y∈∆N
y>0



1−

∑

j∈[N ]

yj :
∑

j∈[N ]

yjf

(
ν̂j
yj

)
−


1−

∑

j∈[N ]

yj


 f(0) ≤ ε



 .

Since f is convex, the above program is a finite convex program in y. We now show that the above
optimization problem admits an analytical solution. Consider the equivalent minimization problem

OPT?KL , min
y∈∆N
y>0




∑

j∈[N ]

yj :
∑

j∈[N ]

ν̂j log ν̂j −
∑

j∈[N ]

ν̂j log yj ≤ ε



 . (A.5)
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Suppose that ε > 0. By a standard duality argument, the above program is equivalent to

OPT?KL = inf
y∈∆N
y>0

sup
γ≥0




∑

j∈[N ]

yj + γ


∑

j∈[N ]

ν̂j log ν̂j − ε−
∑

j∈[N ]

ν̂j log yj





 (A.6a)

= sup
γ≥0



γ


∑

j∈[N ]

ν̂j log ν̂j − ε


+ inf

y∈∆N
y>0




∑

j∈[N ]

yj − γ
∑

j∈[N ]

ν̂j log yj







 (A.6b)

≥ sup
1≥γ>0



γ


∑

j∈[N ]

ν̂j log ν̂j − ε


+ inf

y∈∆N
y>0




∑

j∈[N ]

yj − γ
∑

j∈[N ]

ν̂j log yj







 (A.6c)

= sup
1≥γ>0



γ


∑

j∈[N ]

ν̂j − ε


−

∑

j∈[N ]

ν̂jγ log γ



 , (A.6d)

where the equality (A.6b) follows from strong duality since the Slater condition for the primal
problem is satisfied. The inequality (A.6c) follows directly from the restriction of the feasible set of
γ and because the objective function is continuous in γ. For any γ ∈ (0, 1], the inner minimization
admits the optimal solution y?j = γν̂j , and this leads to the last equation (A.6d). The maximization
over γ is now a convex optimization problem, and the first-order condition gives the optimal solution
γ? = exp (−ε). We can thus conclude that

OPT?KL ≥ exp (−ε) .
By substituting the feasible solution

yj = exp (−ε) ν̂j ∀j ∈ [N ]

into (A.6a), we see that OPT?KL ≤ exp (−ε). Hence,

OPT?KL = exp (−ε) ∀ε > 0.

Consider now the optimal value OPT?KL defined in (A.5) as a parametric function of the radius ε
over the domain R+. One can show that OPT?KL is a continuous function over ε ∈ R+ using Berge’s
maximum theorem [1, Theorem 17.31]. Furthermore, the function exp(−ε) is also continuous over
ε ∈ R+. We thus conclude that

OPT?KL = exp (−ε) ∀ε ≥ 0.

The proof for this case is completed by noticing that ν?KL(x) = 1− OPT?KL.

A.2 Proofs of Section 4

Proof of Proposition 4.2. When ε = 0, BW(ν̂, ε) is the singleton set {ν̂} and the claim is trivial.
It thus suffices to consider ε > 0. Since BW(ν̂, ε) is weakly compact [45, Proposition 3] and the
objective function in (8) is upper-semicontinuous in ν by Lemma A.1, a version of the Weierstrass
maximum value theorem [1, Theorem 2.43] implies that there exists ν? ∈ BW(ν̂, ε) such that

sup
ν∈BW(ν̂,ε)

ν(x) = ν?W(x).

Suppose that ν̄ is an optimal measure that solves (8), that is, ν̄ ∈ BW(ν̂, ε) and ν̄(x) = ν?W(x). Since
the ground metric distance d(·, ·) in the Wasserstein distance is continuous, there exists an optimal
transport plan λ̄ that maps ν̂ to ν̄ [55, Theorem 4.1]. Since ν̂ is a discrete distribution with N atoms,
this optimal transport map can be characterized by N functions λ̄j : X → R+, j ∈ [N ], which
satisfy the balancing constraints

∑

z∈X
λ̄j(z) = ν̂j ∀j ∈ [N ] and

N∑

j=1

λ̄j(z) = ν̄(z) ∀z ∈ X

as well as the Wasserstein distance constraint∑

j∈[N ]

∑

z∈X
d(x̂j , z)λ̄j(z) ≤ ε. (A.7)
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Define κj and ηj as

κj ,
∑

z∈X\(Ŝ∪{x})

λ̄j(z) and ηj ,
∑

z∈X\(Ŝ∪{x})

d(x̂j , z)λ̄j(z) ∀j ∈ [N ].

By construction, we have 0 ≤ κj ≤ ν̂j ≤ 1 and 0 ≤ ηj for all j ∈ [N ]. Suppose that ν̄ assigns
non-zero probability mass on X\(Ŝ ∪ {x}), where Ŝ = supp(ν̂). In that case, there exists j ∈ [N ]
such that κj > 0 and ηj > 0. We will next show that ν̄ cannot be the optimal solution.

Assume first that x 6∈ Ŝ, and define the transport maps λ′j : X → R+ for j ∈ [N ] as

λ′j(z) =





λ̄j(x̂j) +
(

1−min
{

1,
ηj

d(x,x̂j)

})
κj if z = x̂j ,

λ̄j(x̂k) if z = x̂k, k 6= j, k ∈ [N ],

λ̄j(x) + min
{

1,
ηj

d(x,x̂j)

}
κj if z = x,

0 otherwise.

By this construction of λ′j , we obtain
∑

z∈X
λ′j(z) =

∑

z∈X
λ̄j(z) = ν̂j ∀j ∈ [N ].

We now construct a measure ν′ explicitly using the transport map λ′ from ν̂ as

ν′(z) =
∑

j∈[N ]

λ′j(z) ∀z ∈ X . (A.8)

Notice that ν′ is supported on Ŝ ∪ {x}, ν′ ≥ 0 and

∑

z∈X
ν′(z) =

∑

j∈[N ]


 ∑

k∈[N ]

λ̄j(x̂k) + κj + λ̄j(x)


 =

∑

j∈[N ]

∑

z∈X
λ̄j(z) =

∑

j∈[N ]

ν̂j = 1,

which further implies that ν′ is a probability measure on X . Moreover, we have

W(ν̂, ν′) ≤
∑

j∈[N ]

∑

k∈[N ]

d(x̂j , x̂k)λ′j(x̂k) +
∑

j∈[N ]

d(x̂j , x)λ′j(x) (A.9a)

=
∑

j∈[N ]


 ∑

k∈[N ]

d(x̂j , x̂k)λ̄j(x̂k) + d(x̂j , x)λ̄j(x) + min {d(x̂j , x)κj , ηjκj}




≤
∑

j∈[N ]


 ∑

k∈[N ]

d(x̂j , x̂k)λ̄j(x̂k) + d(x̂j , x)λ̄j(x) + ηjκj




≤
∑

j∈[N ]


 ∑

k∈[N ]

d(x̂j , x̂k)λ̄j(x̂k) + d(x̂j , x)λ̄j(x) + ηj


 (A.9b)

=
∑

j∈[N ]


 ∑

k∈[N ]

d(x̂j , x̂k)λ̄j(x̂k) + d(x̂j , x)λ̄j(x) +
∑

z∈X\(Ŝ∪{x})

d(x̂j , z)λ̄j(z)




=
∑

j∈[N ]

∑

z∈X
d(x̂j , z)λ̄j(z) ≤ ε. (A.9c)

Inequality (A.9a) holds because of the definition of the Wasserstein distance and the fact that
{λ′j}j∈[N ] constitutes a feasible transportation plan from ν̂ to ν′. Inequality (A.9b) holds due to the
non-negativity of both ηj and κj and the fact that κj ≤ 1. Inequality (A.9c) is a consequence of (A.7).
The last inequality implies that ν′ ∈ BW(ν̂, ε), and thus ν′ is a feasible measure for the optimistic
likelihood problem. Finally, we have

ν′(x) =
∑

j∈[N ]

λ′j(x) =
∑

j∈[N ]

(
λ̄j(x) + min

{
1,

ηj
d(x, x̂j)

}
κj

)
>
∑

j∈[N ]

λ̄j(x) = ν̄(x),
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where the strict inequality is from the fact that there exists j ∈ [N ] such that κj > 0 and ηj > 0.
Thus, ν′ ∈ BW(ν̂, ε) attains a higher objective value than ν̄, and as a consequence ν̄ cannot be an
optimal measure. Notice that supp(ν′) ⊆ (Ŝ ∪ {x}) by construction, and thus we conclude that
when x 6∈ Ŝ, the optimal measure ν?W satisfies supp(ν?W) ⊆ (Ŝ ∪ {x}).

Assume now that x ∈ Ŝ, and assume without loss of generality that x = x̂N . Consider now the
transport plan λ′j : X → R+ for any j ∈ [N ] defined as

∀j ∈ [N − 1] : λ′j(z) =





λ̄j(x̂j) +
(

1−min
{

1,
ηj

d(x,x̂j)

})
κj if z = x̂j ,

λ̄j(x̂k) if z = x̂k, k 6= j, k ∈ [N − 1],

λ̄j(x) + min
{

1,
ηj

d(x,x̂j)

}
κj if z = x̂N ,

0 otherwise

and

λ′N (z) =





λ̄N (x̂k) if z = x̂k, k ∈ [N − 1],
λ̄N (x̂′N ) + κN if z = x̂N ,
0 otherwise.

One can readily verify that using the collection {λ′j}j∈[N ] to define ν′ in (A.8) results in a probability
measure ν′ ∈ BW(ν̂, ε) that attains a strictly higher objective value than ν̄. Notice that this construc-
tion satisfies supp(ν′) ⊆ Ŝ, and hence we can conclude that when x ∈ Ŝ, the optimal measure ν?W
satisfies supp(ν?W) ⊆ Ŝ. This completes the proof.

Proof of Theorem 4.3. As a result of Proposition 4.2, we can restrict ourselves to probability measures
that are supported on supp(ν̂) ∪ {x}. Thus, it suffices to optimize over the set of discrete probability
measures of the form

ν =
∑

j∈[N ]

yjδx̂j +


1−

∑

j∈[N ]

yj


 δx

for some y ∈ ∆N , where ∆N is the simplex defined in (A.4). Using the Definition 4.1 of the type-1
Wasserstein distance, we can rewrite the optimistic likelihood problem over the Wasserstein ball
BW(ν̂, ε) as the linear program

sup
ν∈BW(ν̂,ε)

ν(x) =





sup 1−
∑

j∈[N ]

yj

s. t. y ∈ ∆N , λ ∈ RN×(N+1)
+∑

j∈[N ]

∑

j′∈[N ]

d(x̂j , x̂j′)λjj′ +
∑

j∈[N ]

d(x̂j , x)λj(N+1) ≤ ε
∑

j′∈[N+1]

λjj′ = ν̂j ∀j ∈ [N ]

∑

j∈[N ]

λjj′ = yj ∀j′ ∈ [N ]

∑

j∈[N ]

λj(N+1) = 1−
∑

j∈[N ]

yj .

From the last constraint, we can see that maximizing 1 −∑j∈[N ] yj is equivalent to maximizing∑
j∈[N ] λj(N+1). In particular, we thus conclude that it is optimal to set λjj′ = 0 for any j ∈

[N ], j′ ∈ [N ] such that j 6= j′. We thus have

sup
ν∈BW(ν̂,ε)

ν(x) =





sup
∑

j∈[N ]

λj(N+1)

s. t. y ∈ ∆N , λ ∈ RN×(N+1)
+

λjj′ = 0 ∀j ∈ [N ], j′ ∈ [N ], j 6= j′∑

j∈[N ]

d(x̂j , x)λj(N+1) ≤ ε

λjj + λj(N+1) = ν̂j , λjj = yj ∀j ∈ [N ].
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By letting Tj = λj(N+1) and eliminating the redundant components of λ, we obtain the desired
reformulation. This completes the proof.

Proof of Proposition 4.4. By a change of variables, we define the weight ŵj = d(x̂j , x)ν̂j and the
decision variables zj = ν̂−1

j Tj for every j ∈ [N ]. The optimal value of problem (9) then coincides
with the optimal value of

max




∑

j∈[N ]

ν̂jzj : z ∈ RN+ ,
∑

j∈[N ]

ŵjzj ≤ ε, zj ≤ 1 ∀j ∈ [N ]



 , (A.10)

which is a continuous (or fractional) knapsack problem. The special structure of (A.10) guarantees

ν̂j
ŵj

=
1

d(x̂j , x)
∀j ∈ [N ],

and hence the continuous knapsack problem (A.10) admits an optimal solution z? that can be found
by sorting the support points x̂j in increasing order of distance from x and then exhausting the
budget ε according to the sorted order (see [16] or [28, Proposition 17.1]). Since sorting an array of
N scalars can be achieved in time O(N logN), problem (A.10) can be solved efficiently, and the
optimal solution T ? of (9) can be constructed from the optimal solution z? of (A.10) by setting

T ?j = ν̂jz
?
j ∀j ∈ [N ].

This completes the proof.

Corollary A.2 (Comparative statics). If the radius ε of the Wasserstein ball is strictly positive, then
ν?W(x) > 0. Moreover, if the radius satisfies ε ≥∑j∈[N ] d(x, x̂j)ν̂j , then ν?W(x) = 1.

The proof of Corollary A.2 follows directly from examining the optimal value of the linear program (9)
and is thus omitted.

A.3 Proofs of Section 5

In the proofs of this section, we denote by ν true
i the unknown true probability measure that induces

the probability mass function p(·|θi) for each i ∈ [C].

Proof of Theorem 5.3. Define for each i ∈ [C] the set

Φi ,
{
νi ∈M(X ) : KL(νi ‖ ν true

i ) > εi
}
,

where the dependence of Φi on εi and ν true
i has been made implicit. Under Assumption 5.2, the

empirical measure ν̂Nii satisfies the large deviation principle with rate function KL(· ‖ ν true
i ) [18,

Theorem 6.2.10]. Sanov’s theorem then implies that

lim sup
Ni→∞

1

Ni
logP∞

(
ν̂Nii ∈ Φi

)
≤ −εi < 0 ∀i ∈ [C]. (A.11)

This in turn implies that there exist positive constants κi <∞ such that

PNi
(
ν̂Nii ∈ Φi

)
≤ κi exp(−Niεi) as Ni →∞.

We now have

P∞(J true ≥ ĴBN ) ≥ P∞
(
ν true
i ∈ BKL(ν̂Nii , εi) ∀i ∈ [C]

)
(A.12)

=
∏

i∈[C]

PNi
(
ν true
i ∈ BKL(ν̂Nii , εi)

)
(A.13)

=
∏

i∈[C]

(
1− PNi

(
ν̂Nii ∈ Φi

))
(A.14)

≥ 1−
∑

i∈[C]

PNi
(
ν̂Nii ∈ Φi

)
. (A.15)
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Here, equality (A.13) follows from our i.i.d. assumption. Equality (A.14) follows from the fact that
the event ν true

i ∈ BKL(ν̂Nii , εi) is the complement of the event ν̂Nii ∈ Φi. Inequality (A.15), finally, is
due to the Weierstrass product inequality. Thus, for each i there exists Ci <∞ such that as Ni →∞,
we have
P∞(J true < ĴBN ) ≤

∑

i∈[C]

PNi
(
ν̂Nii ∈ Φi

)
≤
∑

i∈[C]

κi exp
(
−Niεi

)
≤ κC exp

(
− n min

i∈[C]
{εi}

)

for some κ = maxi∈[C] κi <∞. This further implies that

lim sup
n→∞

1

n
logP∞(J true < ĴBN ) ≤ − min

i∈[C]
{εi} < 0.

This observation completes the proof.

Proof of Theorem 5.5. If εi is chosen as in the statement of the theorem, then the measure concentra-
tion result for the Wasserstein distance [19, Theorem 2] implies that

PNi
(
W(ν true

i , ν̂Nii ) ≥ εi(β,C,Ni)
)
≤ β

C
.

Thus, by applying the union bound, we obtain

PN
(
W(ν true

i , ν̂Nii ) ≥ εi(β,C,Ni) ∀i
)

=
∑

i

PNi
(
W(ν true

i , ν̂Nii ) ≥ εi(β,C,Ni)
)
≤ β,

which implies that
PN
(
ν true
i ∈ BW

(
ν̂Nii , εi(β,C,Ni)

)
∀i
)
≥ 1− β.

We can now conclude that ĴBN ≤ J true with probability at least 1− β.

Proof of Theorem 5.6. For every i ∈ [C], let ν?i ∈ BNii (ν̂Nii ) be an optimal solution of the problem
sup

νi∈B
Ni
i (ν̂

Ni
i )

νi(x), (A.16)

where the dependence of ν?i on the number of samples Ni has been omitted to avoid clutter. The
existence of ν?i ∈ BNii (ν̂Nii ) is guaranteed by Proposition 4.2. By [35, Lemma 3.7], for every i ∈ [C]
it holds (ν true

i )∞-almost surely that

lim
Ni→∞

W
(
ν true
i , ν?i

)
= 0.

Therefore, by [55, Theorem 6.9], ν?i converges to ν true
i weakly as Ni →∞. Since 1x(·) is a bounded,

upper semicontinuous function, the weak continuity implies that (ν true
i )∞-almost surely as Ni →∞,

we have that
ν?i (x)→ ν true

i (x) = p(x|θi). (A.17)
Let utrue ∈ [0, 1]C be the vector defined by (utrue)i = p(x|θi) for i ∈ [C]. Since (utrue)i > 0 for
i = 1, . . . , C, there exists u > 0 such that utrue ∈ [u, 1]C . Consider the parametrized optimization
problems

J ?(u) , min
q∈Q



J (q, u) ,

∑

i∈[C]

qi(log qi − log πi)−
∑

i∈[C]

qi log ui



 , u ∈ [u, 1]C .

We observe that J (·, ·) is jointly continuous on Q× [u, 1]C , Q is compact, and the level sets

q ∈ Q : J (q, u) ≤ −

∑

i∈[C]

πi log u





are non-empty and uniformly bounded over all u ∈ [u, 1]C . By [10, Proposition 4.4] and the
discussion following its proof, J ?(u) is continuous on [u, 1]C . The continuity of J ?(·) and the
convergence (A.17) together imply that (ν true

1 )∞ × · · · × (ν true
C )∞-almost surely, and we thus have

ĴBN = J ?((ν?1 (x), . . . , ν?C(x)))→ J ?(utrue) = J true as N1, . . . , NC →∞.
This observation completes the proof.
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Appendix B Additional Material

B.1 A Measure-Theoretic Derivation of the Evidence Lower Bound Problem

To keep the paper self-contained, we present in this section a derivation of the evidence lower bound
(ELBO), which is a fundamental building block of the variational Bayes method.

Consider a standard Bayesian inference model where the random vector x̃, supported on a sample
space X , is governed by one of the distributions Pθ parameterized by θ ∈ Θ. We assume that there
exists a measure ν̄ on X such that Pθ is absolutely continuous with respect to ν̄ for all θ ∈ Θ.
Moreover, we denote by fx̃|θ the Radon-Nikodym derivative of Pθ with respect to ν̄, that is

fx̃|θ(x|θ) =
dPθ
dν̄

(x) ∀x ∈ X .

Finally, we denote by π the prior measure on the parameter space Θ, while Px denotes the posterior
measure on Θ after observing x.

Consider an optimal solution Q? of the optimization problem

Q? ∈ arg min
Q∈Q

KL(Q ‖ Px),

where KL(· ‖ ·) denotes the KL divergence defined in Definition 2.1. If the feasible set Q is the
collection of all possible probability measures supported on Θ, then Q? = Px. The objective function
of this problem can be re-expressed as

KL(Q ‖ Px) =

∫

Θ

log

(
dQ
dPx

)
dQ (B.1a)

=

∫

Θ

log

(
dQ
dπ

)
dQ−

∫

Θ

log

(
dPx
dπ

)
dQ (B.1b)

= KL(Q ‖ π)−
∫

Θ

log

(
dPθ
dν̄

(x)

)
dQ + log

∫

Θ

fx̃|θ(x|θ)dπ, (B.1c)

where the equality (B.1a) follows from the definition of KL divergence, and (B.1b) is due to the
chain rule for the Radon-Nikodym derivatives because Px � π [49, Theorem 1.31]. Equality (B.1c),
finally, holds since

dPx
dπ

(θ) =
fx̃|θ(x|θ)∫

Θ
fx̃|θ(x|θ)dπ(θ)

=
1∫

Θ
fx̃|θ(x|θ)dπ(θ)

· dPθ
dν̄

(x),

where the first equality follows from Bayes’ theorem [49, Theorem 1.31] and the second equality is
due to the definition of fx̃|θ. Since the last term in (B.1c) does not involve the decision variable Q,
the measure Q? can be equivalently expressed as the optimal solution of

min
Q∈Q

KL(Q ‖ π)−
∫

Θ

log

(
dPθ
dν̄

(x)

)
dQ.

If we define the conditional density p(x|θ) with respect to ν̄ of x̃ given the parameter θ [49, Sec-
tion 1.3.1], that is,

p(x|θ) = fx̃|θ(x|θ),
then Q? solves

min
Q∈Q

KL(Q ‖ π)− EQ[log p(x|θ)].

The function p(x|θ), considered as a function of the parameter θ after x has been observed, is often
called the likelihood function. If p(x|θ) is considered as a function of x given the parameter θ, then it
is often called the conditional density.

B.2 Generalization to f -Divergence Ambiguity Sets

In this section, we consider the class of ambiguity sets described by f -divergences, which generalizes
the KL ambiguity set from Section 2.
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Definition B.1 (f -divergence). The f -divergence Df between two measures ν1 and ν2 supported on
X is defined as

Df (ν1 ‖ ν2) =

∫

z∈X
f

(
ν1(z)

ν2(z)

)
ν2(z),

where f : R→ R is a convex function satisfying f(1) = 0. More specifically,

• If f(t) = t log(t)− t+ 1, then Df is the Kullback-Leibler divergence.

• If f(t) = 1−
√
t, then Df is the Hellinger distance.

• If f(t) = (t− 1)2, then Df is the Pearson’s χ2-divergence.

• If f(t) = |t− 1|, then Df is the total variation distance.

We now consider the f -divergence ball Bf (ν̂, ε) of radius ε ≥ 0, which contains all probability
measures in the neighborhood of ν̂ as measured by the f -divergence:

Bf (ν̂, ε) , {ν ∈M(X ) : Df (ν̂ ‖ ν) ≤ ε} (B.2)

Moreover, we assume that the nominal distribution ν̂ is supported on N distinct points x̂1, . . . , x̂N ,
that is, ν̂ =

∑
j∈[N ] ν̂jδx̂j with ν̂j > 0 ∀j ∈ [N ] and

∑
j∈[N ] ν̂j = 1.

In analogy to Section 2, we first provide a generalized version of Proposition 2.2.

Corollary B.2 (Existence of optimizers; f -divergence ambiguity). For any ε ≥ 0 and x ∈ X , there
exists a measure ν?f ∈ Bf (ν̂, ε) such that

sup
ν∈Bf (ν̂,ε)

ν(x) = ν?f (x). (B.3)

Moreover, ν?f is supported on at most N + 1 points satisfying supp(ν?f ) ⊆ supp(ν̂) ∪ {x}.

The proof of Corollary B.2 follows from the proof of Proposition 2.2 and thus it is omitted.

Theorem B.3 (Optimistic likelihood; f -divergence ambiguity). Suppose that ν̂ =
∑
j∈[N ] ν̂jδx̂j .

For any data point x ∈ X , the optimization problem in (B.3) can be reformulated as a finite convex
program. Moreover, if x 6= x̂j for all j ∈ [N ], then:

1. If Df is the Hellinger distance, then for any ε ∈ [0, 1], we have ν?Hellinger(x) = 1− (1− ε)2.

2. If Df is the Pearson’s χ2-divergence, then for any ε ∈ R+, we have ν?χ2(x) = 1− (1 + ε)
−1.

3. If Df is the total variation distance, then for any ε ∈ R+, we have ν?TV(x) = ε/2.

Proof of Theorem B.3. The reformulation as a convex program follows directly from the first part of
the proof of Theorem 2.3 using the general function f , and it is thus omitted. We now proceed to
consider the case when x 6∈ Ŝ, and we derive the optimal value ν?f (x) for each divergence f .

1. Hellinger distance. Following the same approach as in the proof of Theorem 2.3, we employ the
definition of the Hellinger distance to obtain the equivalent minimization problem

OPT?Hellinger = min
y∈∆N




∑

j∈[N ]

yj :
∑

j∈[N ]

ν̂j −
∑

j∈[N ]

√
ν̂j
√
yj ≤ ε



 .
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Suppose that ε ∈ (0, 1]. Using a duality argument, we have

OPT?Hellinger = min
y∈∆N

max
γ≥0




∑

j∈[N ]

yj + γ


∑

j∈[N ]

ν̂j −
∑

j∈[N ]

√
ν̂j
√
yj − ε







= max
γ≥0



γ


∑

j∈[N ]

ν̂j − ε


+ min

y∈∆N




∑

j∈[N ]

yj − γ
∑

j∈[N ]

√
ν̂j
√
yj









≥ sup
2≥γ>0



γ


∑

j∈[N ]

ν̂j − ε


+ min

y∈∆N




∑

j∈[N ]

yj − γ
∑

j∈[N ]

√
ν̂j
√
yj









= sup
2≥γ>0



γ


∑

j∈[N ]

ν̂j − ε


− γ2

4

∑

j∈[N ]

ν̂j



 ,

where we have used the optimal solution y?j = γ2ν̂j/4 to arrive at the last equation. The
supremum over γ admits the optimal solution γ? = 2 (1− ε). We can thus show that

OPT ?Hellinger ≥ (1− ε)2 ∀ε ∈ (0, 1].

The rest of the proof is analogous to the proof of Theorem 2.3.

2. Pearson’s χ2-divergence. By definition of the divergence, we obtain

OPT?χ2 = min
y∈∆N




∑

j∈[N ]

yj :
∑

j∈[N ]

ν̂2
j y
−1
j −

∑

j∈[N ]

ν̂j ≤ ε



 .

Suppose that ε > 0. Using a duality argument, we have

OPT?χ2 = min
y∈∆N

max
γ≥0




∑

j∈[N ]

yj + γ


∑

j∈[N ]

ν̂2
j y
−1
j −

∑

j∈[N ]

ν̂j − ε







= max
γ≥0



−γ


∑

j∈[N ]

ν̂j + ε


+ min

y∈∆N




∑

j∈[N ]

yj + γ
∑

j∈[N ]

ν̂2
j y
−1
j









≥ sup
1≥γ>0



−γ


∑

j∈[N ]

ν̂j + ε


+ min

y∈∆N




∑

j∈[N ]

yj + γ
∑

j∈[N ]

ν̂2
j y
−1
j









= sup
1≥γ>0



−γ


∑

j∈[N ]

ν̂j + ε


+ 2

√
γ
∑

j∈[N ]

ν̂j



 ,

where we have used the optimal solution y?j =
√
γν̂j to arrive at the last equation. The supremum

over γ admits the optimal solution γ? = (1 + ε)
−2, which implies that

OPT?χ2 ≥ (1 + ε)
−1 ∀ε > 0.

The rest of the proof is analogous to the proof of Theorem 2.3.

3. Total variation distance. We have

OPT?TV = min
y∈∆N




∑

j∈[N ]

yj :
∑

j∈[N ]

|ν̂j − yj |+ 1−
∑

j∈[N ]

yj ≤ ε



 .

19



-5 -4 -3 -2 -1 0 1 2 3 4 5

0.1

0.3

0.5

0.7

Mean-Variance
Wasserstein

(a) Nominal measure ν̂(1)

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.1

0.3

0.5

0.7

Mean-Variance
Wasserstein

(b) Nominal measure ν̂(2)

Figure 4: Approximations of the likelihood p(x|θ) under two different nominal measures. The
approximation offered by the mean-variance ambiguity set is the same for both ν̂(1) and ν̂(2). In
contrast, the approximation offered by the Wasserstein ambiguity set produces a fatter tail under the
nominal measure ν̂(2), whose support is more spread out.

For any ε ≥ 0, the optimal solution y? satisfies y?j ≤ ν̂j , and thus we have

OPT?TV = min
y∈∆N




∑

j∈[N ]

yj :
∑

j∈[N ]

(ν̂j − yj) + 1−
∑

j∈[N ]

yj ≤ ε





= min
y∈∆N




∑

j∈[N ]

yj : 2− 2
∑

j∈[N ]

yj ≤ ε



 = 1− ε

2
,

which finishes the proof for the total variation distance.

These observations complete the proof.

B.3 Comparison of Moment and Wasserstein Ambiguity Sets

In this section, we empirically demonstrate that the approximation using the Wasserstein ambiguity
set can capture the tail behavior of the nominal distribution ν̂ better than the approximation using the
moment ambiguity set. To this end, consider the two univariate discrete nominal measures

ν̂(1) =
1

2
δ−1 +

1

2
δ1 and ν̂(2) = 0.1δ−2 + 0.4δ− 1

2
+ 0.4δ 1

2
+ 0.1δ2.

Notice that both ν̂(1) and ν̂(2) share the same mean 0 and the same variance 1, and thus we find that

sup
ν∈BMV(ν̂(1))

ν(x) = sup
ν∈BMV(ν̂(2))

ν(x) ∀x ∈ X .

However, if we use the Wasserstein ambiguity set BW(·), then in general we have

sup
ν∈BW(ν̂(1),ε)

ν(x) 6= sup
ν∈BW(ν̂(2),ε)

ν(x).

Figure 4 illustrates the approximations p(x|θ) offered by the optimal value of the optimistic likelihood
problem (3) over these two ambiguity sets. If we choose ν̂(2) as the nominal measure, we would
expect the true distribution p(·|θ) to be more spread out than when we choose ν̂(1). Nevertheless,
this structural information is discarded by the moment ambiguity set, and the optimal value of the
optimistic likelihood problem is the same for ν̂(1) and ν̂(2). In contrast, the Wasserstein ambiguity
set produces a fatter tail under the nominal measure ν̂(2) than under ν̂(1), which better reflects the
information contained in the nominal distribution.
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Interestingly, if x = 0, then we have
sup

ν∈BMV(ν̂(1))

ν(0) = sup
ν∈BMV(ν̂(2))

ν(0) = 1.

Indeed, consider the family of discrete measures {νk}k∈N+ defined as

νk =

(
1− 1

k2

)
δ0 +

1

2k2
(δk + δ−k) ∀k ∈ N+.

By construction, νk has mean 0 and variance 1, and thus {νk}k∈N+
belong to BMV(ν̂(1)) and attain

the optimal value of 1 asymptotically.

B.4 Approximation of the Log-Likelihood for Multiple Observations

In many cases, the update of the posterior is carried out after observing a batch of L i.i.d. samples
xL1 , {x1, . . . , xL}. In this case, the log-likelihood of the data xL1 can be written as

log p(xL1 |θ) = log
∏

`∈[L]

p(x`|θ) =
∑

`∈[L]

log p(x`|θ).

When p(·|θ) is intractable, we propose the optimistic log-likelihood approximation

log p(xL1 |θ) ≈ sup
ν∈Bθ(ν̂θ)

∑

`∈[L]

log ν(x`) (B.4)

for some ambiguity set Bθ(ν̂θ) defined below. Note that the optimistic log-likelihood approxima-
tion (B.4) follows the spirit of the optimistic likelihood approximation (3).

Because the log function attains −∞ at 0, we need to restrict ourselves to a subset ofM(X ) over
which the objective function of (B.4) is well-defined. For any batch data xL1 , we denote byMxL1

(X )

the set of measures supported on X with positive mass at any x` ∈ xL1 , that is,
MxL1

(X ) = {ν ∈M(X ) : ν(x`) > 0 ∀` ∈ [L]} .

We first establish the upper semicontinuity of the objective function in (B.4).
Lemma B.4 (Upper semicontinuity). For any batch data xL1 , the functionalG(ν) =

∑
`∈[L] log ν(x`)

is upper semicontinuous overMxL1
(X ).

Proof. Let {νk}k∈N+ be a sequence of probability measures in MxL1
(X ) converging weakly to

ν ∈MxL1
(X ). We have

lim sup
k→∞

G(νk) = lim sup
k→∞

∑

`∈[L]

log νk(x`) =
∑

`∈[L]

log

(
lim sup
k→∞

νk(x`)

)
≤
∑

`∈[L]

log ν(x`) = G(ν),

where the first and last equalities are from the definition of G, the second equality is from the
continuity of the log function overMxL1

(X ), and the inequality is due to the upper semicontinuity of
the function F (ν) = ν(x) established in Lemma A.1. This completes the proof.

Given batch data xL1 , we now consider the Wasserstein ambiguity set centered at the nominal
distribution ν̂,

BW(ν̂, ε) = {ν ∈MxL1
(X ) : W(ν, ν̂) ≤ ε},

where the dependence on θ and xL1 has been made implicit to avoid clutter.
Theorem B.5 (Optimistic log-likelihood; Wasserstein ambiguity). Suppose that Assumption ??
holds. For any batch data xL1 and radius ε > 0, the optimistic log-likelihood problem (B.4) under the
Wasserstein ball BW(ν̂, ε) is equivalent to the finite convex program

sup
ν∈BW(ν̂,ε)

∑

`∈[L]

log ν(x) =





max
∑

`∈[L]

log


∑

j∈[N ]

Tj`




s. t. T ∈ RN×L+ ,
∑

j∈[N ]
`∈[L]

d(x̂j , x`)Tj` ≤ ε

∑

`∈[L]

Tj` ≤ ν̂j ∀j ∈ [N ].

(B.5)
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Proof. We first combine the fact that the logarithm is strictly increasing with the proof of Proposi-
tion 4.2 to show that there is an optimal measure ν?W that is supported on supp(ν?W) ⊆ supp(ν̂)∪xL1 ,
a finite set of cardinalityN+L. Notice that the existence of this optimal measure is guaranteed by the
upper semicontinuity of the objective function established in Lemma B.4 and the weak compactness
of BW(ν̂, ε) established in [45, Proposition 3]. The details of this step are omitted for brevity.

Since the optimal measure is supported on supp(ν̂)∪ xL1 , it suffices to consider measures of the form

ν =
∑

j∈[N ]

yjδx̂j +
∑

`∈[L]

z`δx`

for some y ∈ RN+ , z ∈ RL+ satisfying
∑
j∈[N ] yj +

∑
`∈[L] z` = 1. Using the Definition 4.1 of

the type-1 Wasserstein distance, we can rewrite the optimistic log-likelihood problem over the
Wasserstein ball BW(ν̂, ε) as the convex program

sup
∑

`∈[L]

log(z`)

s. t. y ∈ RN+ , z ∈ RL+, λ ∈ RN×(N+L)
+∑

j∈[N ]

∑

j′∈[N ]

d(x̂j , x̂j′)λjj′ +
∑

j∈[N ]

∑

`∈[L]

d(x̂j , x`)λj(N+`) ≤ ε
∑

j′∈[N+L]

λjj′ = ν̂j ∀j ∈ [N ]

∑

j∈[N ]

λjj′ = yj ∀j′ ∈ [N ]

∑

j∈[N ]

λjj′ = zj′−N ∀j′ ∈ [N + L]\[N ]

∑
j∈[N ] yj +

∑
`∈[L] z` = 1.

By letting Tj` = λj(N+`) and eliminating the redundant components of λ, we obtain the desired
reformulation. This completes the proof.
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