125 research outputs found

    Characterisation of CART-containing neurons and cells in the porcine pancreas, gastro-intestinal tract, adrenal and thyroid glands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The peptide CART is widely expressed in central and peripheral neurons, as well as in endocrine cells. Known peripheral sites of expression include the gastrointestinal (GI) tract, the pancreas, and the adrenal glands. In rodent pancreas CART is expressed both in islet endocrine cells and in nerve fibers, some of which innervate the islets. Recent data show that CART is a regulator of islet hormone secretion, and that CART null mutant mice have islet dysfunction. CART also effects GI motility, mainly via central routes. In addition, CART participates in the regulation of the hypothalamus-pituitary-adrenal-axis. We investigated CART expression in porcine pancreas, GI-tract, adrenal glands, and thyroid gland using immunocytochemistry.</p> <p>Results</p> <p>CART immunoreactive (IR) nerve cell bodies and fibers were numerous in pancreatic and enteric ganglia. The majority of these were also VIP IR. The finding of intrinsic CART containing neurons indicates that pancreatic and GI CART IR nerve fibers have an intrinsic origin. No CART IR endocrine cells were detected in the pancreas or in the GI tract. The adrenal medulla harboured numerous CART IR endocrine cells, most of which were adrenaline producing. In addition CART IR fibers were frequently seen in the adrenal cortex and capsule. The capsule also contained CART IR nerve cell bodies. The majority of the adrenal CART IR neuronal elements were also VIP IR. CART IR was also seen in a substantial proportion of the C-cells in the thyroid gland. The majority of these cells were also somatostatin IR, and/or 5-HT IR, and/or VIP IR.</p> <p>Conclusion</p> <p>CART is a major neuropeptide in intrinsic neurons of the porcine GI-tract and pancreas, a major constituent of adrenaline producing adrenomedullary cells, and a novel peptide of the thyroid C-cells. CART is suggested to be a regulatory peptide in the porcine pancreas, GI-tract, adrenal gland and thyroid.</p

    Life at school in Australia and Japan: the impact of stress and support on bullying and adaptation to school

    Get PDF
    In this international, comparative study, path analysis was used to examine eight different aspects of Japanese and Australian students' experiences of school life in relation to their effect on adaptation to school. Adaptation was constructed to include information on enjoyment of school, feelings of belonging to school, and relationships with other students. Two separate path models were tested to compare questionnaire data from over 3000 Australian and 6000 Japanese students across Years 5-10. The questionnaire was developed collaboratively by the authors to examine issues of common concern in both countries. Issues that related to the impact on adaptation to school of stress and support: family teachers, peers and school work, as well as bullying were of particular interest. Lack of support and the influential effect of stress were found to exert direct negative effects on adaptation to school, especially for high school students in Japan and Australia. The path results also confirmed the stressful effects of bullying in both countries. The finding of a strong relationship between bullying others and being victimised is discussed in the paper. Finally, the differences and similarities between Japanese and Australian students' perceptions of school life are extrapolated

    Human Islet Amyloid Polypeptide Transgenic Mice: In Vivo and Ex Vivo Models for the Role of hIAPP in Type 2 Diabetes Mellitus

    Get PDF
    Human islet amyloid polypeptide (hIAPP), a pancreatic islet protein of 37 amino acids, is the main component of islet amyloid, seen at autopsy in patients with type 2 diabetes mellitus (DM2). To investigate the roles of hIAPP and islet amyloid in DM2, we generated transgenic mice expressing hIAPP in their islet beta cells. In this study, we found that after a long-term, high-fat diet challenge islet amyloid was observed in only 4 of 19 hIAPP transgenic mice. hIAPP transgenic females exhibited severe glucose intolerance, which was associated with a downregulation of GLUT-2 mRNA expression. In isolated islets from hIAPP males cultured for 3 weeks on high-glucose medium, the percentage of amyloid containing islets increased from 5.5% to 70%. This ex vivo system will allow a more rapid, convenient, and specific study of factors influencing islet amyloidosis as well as of therapeutic strategies to interfere with this pathological process

    Phosphodiesterase 3B Is Localized in Caveolae and Smooth ER in Mouse Hepatocytes and Is Important in the Regulation of Glucose and Lipid Metabolism

    Get PDF
    Cyclic nucleotide phosphodiesterases (PDEs) are important regulators of signal transduction processes mediated by cAMP and cGMP. One PDE family member, PDE3B, plays an important role in the regulation of a variety of metabolic processes such as lipolysis and insulin secretion. In this study, the cellular localization and the role of PDE3B in the regulation of triglyceride, cholesterol and glucose metabolism in hepatocytes were investigated. PDE3B was identified in caveolae, specific regions in the plasma membrane, and smooth endoplasmic reticulum. In caveolin-1 knock out mice, which lack caveolae, the amount of PDE3B protein and activity were reduced indicating a role of caveolin-1/caveolae in the stabilization of enzyme protein. Hepatocytes from PDE3B knock out mice displayed increased glucose, triglyceride and cholesterol levels, which was associated with increased expression of gluconeogenic and lipogenic genes/enzymes including, phosphoenolpyruvate carboxykinase, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein 1c and hydroxyl-3-methylglutaryl coenzyme A reductase. In conclusion, hepatocyte PDE3B is localized in caveolae and smooth endoplasmic reticulum and plays important roles in the regulation of glucose, triglyceride and cholesterol metabolism. Dysregulation of PDE3B could have a role in the development of fatty liver, a condition highly relevant in the context of type 2 diabetes

    Effects of meal and incretins in the regulation of splanchnic blood flow

    Get PDF
    Objective: Meal ingestion is followed by a redistribution of blood flow (BF) within the splanchnic region contributing to nutrient absorption, insulin secretion and glucose disposal, but factors regulating this phenomenon in humans are poorly known. The aim of the present study was to evaluate the organ-specific changes in BF during a mixed-meal and incretin infusions.Design: A non-randomized intervention study of 10 healthy adults to study splanchnic BF regulation was performed.Methods: Effects of glucose-dependent insulinotrophic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) infusions and mixed-meal were tested in 10 healthy, glucose tolerant subjects using PET-MRI multimodal imaging technology. Intestinal and pancreatic BF and blood volume (BV) were measured with O-15-water and O-15-carbon monoxide, respectively.Results: Ingestion of a mixed-meal led to an increase in pancreatic and jejunal BF, whereas duodenal BF was unchanged. Infusion of GIP and GLP-1 reduced BF in the pancreas. However, GIP infusion doubled blood flow in the jejunum with no effect of GLP-1.Conclusion: Together, our data suggest that meal ingestion leads to increases in pancreatic BF accompanied by a GIP-mediated increase in jejunal but not duodenal blood flow

    Detection and identification by PCR of Clostridium chauvoei in clinical isolates, bovine faeces and substrates from biogas plant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Clostridium chauvoei </it>causes blackleg, an acute disease associated with high mortality in ruminants. The apparent primary port of entry is oral, during grazing on pasture contaminated by spores. Cases of blackleg can occur year after year on contaminated pastures. A method to determine the prevalence of <it>C. chauvoei </it>spores on pasture would be useful.</p> <p>The standard method for <it>C. chauvoei </it>detection is culture and biochemical identification, which requires a pure culture. In most muscle samples from cattle dead from blackleg the amount of <it>C. chauvoei </it>in samples is high and the bacterium can easily be cultured, although some samples may be contaminated. Detection by PCR would be faster and independent of contaminating flora.</p> <p>Digested residues from biogas plants provide an excellent fertiliser, but it is known that spore-forming baeria such as <it>Clostridium </it>spp. are not reduced by pasteurisation. The use of digested residues as fertiliser may contribute to the spread of <it>C. chauvoei</it>. Soil, manure and substrate from biogas plants are contaminated with other anaerobic bacteria which outgrow <it>C. chauvoei</it>. Therefore, detection by PCR is would be useful. This study applied a PCR-based method to detect of <it>C. chauvoei </it>in 25 muscle and blood samples, 114 manure samples, 84 soil samples and 33 samples from the biogas process.</p> <p>Methods</p> <p>Muscle tissues from suspected cases of blackleg were analysed both by the standard culture method followed by biochemical identification and by PCR, with and without preculture. To investigate whether muscle tissue samples are necessary, samples taken by swabs were also investigated. Samples from a biogas plant and manure and soil from farms were analysed by culture followed by PCR. The farms had proven cases of blackleg. For detection of <it>C. chauvoei </it>in the samples, a specific PCR primer pair complementary to the spacer region of the 16S-23S rRNA gene was used.</p> <p>Results</p> <p><it>Clostridium chauvoei </it>was detected in 32% of muscle samples analysed by culture with identification by biochemical methods and in 56% of cases by culture in combination with PCR. <it>Clostridium chauvoei </it>was detected in 3 (out of 11) samples from the biogas plants collected before pasteurisation, but samples taken after pasteurisation and after digestion all tested negative. <it>Clostridium chauvoei </it>was not detected in any soil or silage samples and only one manure samples tested positive.</p> <p>Conclusion</p> <p>The diagnostic method used for <it>C. chauvoei </it>was not applicable in estimating the risk of blackleg on particular pastures from manure or soil samples, but found to be highly useful for clinical samples.</p

    Transcription Factor Binding Site Polymorphism in the Motilin Gene Associated with Left-Sided Displacement of the Abomasum in German Holstein Cattle

    Get PDF
    Left-sided displacement of the abomasum (LDA) is a common disease in many dairy cattle breeds. A genome-wide screen for QTL for LDA in German Holstein (GH) cows indicated motilin (MLN) as a candidate gene on bovine chromosome 23. Genomic DNA sequence analysis of MLN revealed a total of 32 polymorphisms. All informative polymorphisms used for association analyses in a random sample of 1,136 GH cows confirmed MLN as a candidate for LDA. A single nucleotide polymorphism (FN298674:g.90T>C) located within the first non-coding exon of bovine MLN affects a NKX2-5 transcription factor binding site and showed significant associations (ORallele = 0.64; −log10Pallele = 6.8, −log10Pgenotype = 7.0) with LDA. An expression study gave evidence of a significantly decreased MLN expression in cows carrying the mutant allele (C). In individuals heterozygous or homozygous for the mutation, MLN expression was decreased by 89% relative to the wildtype. FN298674:g.90T>C may therefore play a role in bovine LDA via the motility of the abomasum. This MLN SNP appears useful to reduce the incidence of LDA in German Holstein cattle and provides a first step towards a deeper understanding of the genetics of LDA
    corecore