31 research outputs found

    Contact geometry and mechanics predict friction forces during tactile surface exploration

    Get PDF
    International audienceWhen we touch an object, complex frictional forces are produced, aiding us in perceiving surface features that help to identify the object at hand, and also facilitating grasping and manipulation. However, even during controlled tactile exploration, sliding friction forces fluctuate greatly, and it is unclear how they relate to the surface topography or mechanics of contact with the finger. We investigated the sliding contact between the finger and different relief surfaces, using high-speed video and force measurements. Informed by these experiments, we developed a friction force model that accounts for surface shape and contact mechanical effects, and is able to predict sliding friction forces for different surfaces and exploration speeds. We also observed that local regions of disconnection between the finger and surface develop near high relief features, due to the stiffness of the finger tissues. Every tested surface had regions that were never contacted by the finger; we refer to these as " tactile blind spots ". The results elucidate friction force production during tactile exploration, may aid efforts to connect sensory and motor function of the hand to properties of touched objects, and provide crucial knowledge to inform the rendering of realistic experiences of touch contact in virtual reality

    A Real-time Synthesizer of Naturalistic Congruent Audio-Haptic Textures

    Get PDF
    International audienceThis demo paper presents a multi-modal device able to generate real-time audio-haptic signal as response to the users' motion and produce naturalistic sensation. The device consists in a touch screen with haptic feedback based on ultrasonic friction modulation and a sound synthesizer. The device will help investigate audio-haptic interaction. In particular the system is built to allow for an exploration of di↵erent strategy of mapping audio and haptic signal to explore the limits of congruence. Such interactions could be the key to more informative and user-friendly touchscreens for Human-Machine-Interfaces

    Sensing the Frictional State of a Robotic Skin via Subtractive Color Mixing

    No full text
    International audienc

    Power Optimization of Ultrasonic Friction-Modulation Tactile Interfaces

    No full text

    Anticipatory vibrotactile cueing facilitates grip force adjustment

    No full text
    Human grip forces are automatically adjusted upon occurrence of an external disturbance experienced by an object that is held by a thumb and index finger. We investigated some of the cues that may be used by the brain to perform rapid grip restabilization. To this end we ask subjects to grip and hold an instrumented and actuated parallelepiped-shaped handle between the index finger and the thumb. Under computer control, the handle could be jerked from the still grip and could independently provided vibration of 250 or 100 Hz to the gripping fingers. We found that the latency of the motor corrective action was 139 ms on average, but when a vibrotactile stimulation was applied 50 ms before the application of the pulling force, the latency was reduced on average to 117 ms. The average latency of the conscious response to the vibrotactile stimuli was 230 ms, suggesting that vibrotactile stimulation was capable of influencing the reflex action. A) Overall view grip handle B) Differential capstan drive encoder

    The Spatial Spectrum of Tangential Skin Displacement Can Encode Tactual Texture

    Get PDF
    International audienceThe tactual scanning of five naturalistic textures was recorded with an apparatus capable of measuring the tangential interaction force with a high degree of temporal and spatial resolution. The resulting signal showed that the transformation from the geometry of a surface to the force of traction, and hence to the skin deformation experienced by a finger is a highly nonlinear process. Participants were asked to identify simulated textures reproduced by stimulating their fingers with rapid, imposed lateral skin displacements as a function of net position. They performed the identification task with a high degree of success, yet not perfectly. The fact that the experimental conditions eliminated many aspects of the interaction, including low-frequency finger deformation, distributed information, as well as normal skin movements, shows that the nervous system is able to rely on only two cues: amplitude and spectral information. The examination of the " spatial spectrograms " of the imposed lateral skin displacement revealed that texture could be represented spatially despite being sensed through time and that these spectrograms were distinctively organized into what could be called " spatial formants ". This finding led us to speculate that the mechanical properties of the finger enables spatial information to be used for perceptual purposes in humans without any distributed sensing, a principle that could be applied to robots

    The Role of Damping in Ultrasonic Friction Reduction

    No full text
    24th IEEE Haptics Symposium, Philadelphia, PA, APR 08-11, 2016International audienceWe observed the dynamic interaction between a fingertip and an ultrasonically vibrating plate using Laser Doppler Vibrometry in order to investigate the causes of ultrasonic friction reduction. Observations were made both for a human finger and for artificial fingertips constructed to exhibit different amounts of damping. The data suggest that fingertip dynamics play an important role in friction reduction. In particular, the fingertips were all found to exhibit forced oscillations in response to the plate motion, but with different relative phases. Fingertips with lower damping oscillated more in-phase with the plate, while fingertips with higher damping oscillated more out-of-phase with the plate, and also exhibited greater friction reduction. These results are reflected in a model

    REPLY TO JACKSON ET AL.: Precision on the squeeze film levitation of human fingertip

    No full text
    International audienceno abstrac

    Partial squeeze film levitation modulates fingertip friction

    No full text
    International audienceWhen touched, a glass plate excited with ultrasonic transverse waves feels notably more slippery than it does at rest. To study this phenomenon, we use frustrated total internal reflection to image the asperities of the skin that are in intimate contact with a glass plate. We observed that the load at the interface is shared between the elastic compression of the asperities of the skin and a squeeze film of air. Stroboscopic investigation reveals that the time evolution of the interfacial gap is partially out of phase with the plate vibration. Taken together, these results suggest that the skin bounces against the vibrating plate but that the bounces are cushioned by a squeeze film of air that does not have time to escape the interfacial separation. This behavior results in dynamic levitation, in which the average number of asperities in intimate contact is reduced, thereby reducing friction. This improved understanding of the physics of friction reduction provides key guidelines for designing interfaces that can dynamically modulate friction with soft materials and biological tissues, such as human fingertips
    corecore