120 research outputs found

    Редкие металлы в космической технике

    Get PDF
    В данной статье рассматривается применение редких металлов в космической технологии. Такжев статье описана классификация редких металлов, уникальные свойства и место каждой группыэлементов в конструировании комических аппаратов.Im vorliegenden Artikel wird die Verwendung von seltenen Metallen in der Raumfahrttechnik betrachtet.Der Artikel beschreibt auch die Klassifizierung von seltenen Metallen, die unikalen Eigenschaften jeder Gruppe undderen Funktion bei der Konstruktion von kosmischen Geräten

    Discovery and Characterization of an Endogenous CXCR4 Antagonist

    Get PDF
    CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPIX4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation

    The role of prostaglandin E2 (PGE 2) in toll-like receptor 4 (TLR4)-mediated colitis-associated neoplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously found that TLR4-deficient (TLR4-/-) mice demonstrate decreased expression of mucosal PGE <sub>2 </sub>and are protected against colitis-associated neoplasia. However, it is still unclear whether PGE <sub>2 </sub>is the central factor downstream of TLR4 signaling that promotes intestinal tumorigenesis. To further elucidate critical downstream pathways involving TLR4-mediated intestinal tumorigenesis, we examined the effects of exogenously administered PGE <sub>2 </sub>in TLR4-/- mice to see if PGE <sub>2 </sub>bypasses the protection from colitis-associated tumorigenesis.</p> <p>Method</p> <p>Mouse colitis-associated neoplasia was induced by azoxymethane (AOM) injection followed by two cycles of dextran sodium sulfate (DSS) treatment. Two different doses of PGE <sub>2 </sub>(high dose group, 200 μg, n = 8; and low dose group, 100 μg, n = 6) were administered daily during recovery period of colitis by gavage feeding. Another group was given PGE <sub>2 </sub>during DSS treatment (200 μg, n = 5). Inflammation and dysplasia were assessed histologically. Mucosal Cox-2 and amphiregulin (AR) expression, prostanoid synthesis, and EGFR activation were analyzed.</p> <p>Results</p> <p>In control mice treated with PBS, the average number of tumors was greater in WT mice (n = 13) than in TLR4-/- mice (n = 7). High dose but not low dose PGE <sub>2 </sub>treatment caused an increase in epithelial proliferation. 28.6% of PBS-treated TLR4-/- mice developed dysplasia (tumors/animal: 0.4 ± 0.2). By contrast, 75.0% (tumors/animal: 1.5 ± 1.2, P < 0.05) of the high dose group and 33.3% (tumors/animal: 0.3 ± 0.5) of the low dose group developed dysplasia in TLR4-/- mice. Tumor size was also increased by high dose PGE <sub>2 </sub>treatment. Endogenous prostanoid synthesis was differentially affected by PGE <sub>2 </sub>treatment during acute and recovery phases of colitis. Exogenous administration of PGE <sub>2 </sub>increased colitis-associated tumorigenesis but this only occurred during the recovery phase. Lastly, PGE <sub>2 </sub>treatment increased mucosal expression of AR and Cox-2, thus inducing EGFR activation and forming a positive feedback mechanism to amplify mucosal Cox-2.</p> <p>Conclusions</p> <p>These results highlight the importance of PGE <sub>2 </sub>as a central downstream molecule involving TLR4-mediated intestinal tumorigenesis.</p

    The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system

    Full text link
    Transforming growth factor-beta (TGF-beta) has opposing roles in breast cancer progression by acting as a tumor suppressor in the initial phase, but stimulating invasion and metastasis at later stages. In contrast to the mechanisms by which TGF-beta induces growth arrest, the pathways that mediate tumor invasion are not well understood. Here, we describe a TGF-beta-dependent invasion assay system consisting of spheroids of MCF10A1 normal breast epithelial cells (M1) and RAS-transformed (pre-)malignant derivatives (M2 and M4) embedded in collagen gels. Both basal and TGF-beta-induced invasion of these cell lines was found to correlate with their tumorigenic potential; M4 showing the most aggressive behavior and M1 showing the least. Basal invasion was strongly inhibited by the TGF-beta receptor kinase inhibitor SB-431542, indicating the involvement of autocrine TGF-beta or TGF-beta-like activity. TGF-beta-induced invasion in premalignant M2 and highly malignant M4 cells was also inhibited upon specific knockdown of Smad3 or Smad4. Interestingly, both a broad spectrum matrix metalloproteinase (MMP) inhibitor and a selective MMP2 and MMP9 inhibitor mitigated TGF-beta-induced invasion of M4 cells, while leaving basal invasion intact. In line with this, TGF-beta was found to strongly induce MMP2 and MMP9 expression in a Smad3- and Smad4-dependent manner. This collagen-embedded spheroid system therefore offers a valuable screening model for TGF-beta/Smad- and MMP2- and MMP9-dependent breast cancer invasion.Urolog

    TGF-β1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metastasis is the main factor responsible for death in breast cancer patients. Matrix metalloproteinases (MMPs) and their inhibitors, known as tissue inhibitors of MMPs (TIMPs), and the membrane-associated MMP inhibitor (RECK), are essential for the metastatic process. We have previously shown a positive correlation between MMPs and their inhibitors expression during breast cancer progression; however, the molecular mechanisms underlying this coordinate regulation remain unknown. In this report, we investigated whether TGF-β1 could be a common regulator for MMPs, TIMPs and RECK in human breast cancer cell models.</p> <p>Methods</p> <p>The mRNA expression levels of TGF-β isoforms and their receptors were analyzed by qRT-PCR in a panel of five human breast cancer cell lines displaying different degrees of invasiveness and metastatic potential. The highly invasive MDA-MB-231 cell line was treated with different concentrations of recombinant TGF-β1 and also with pharmacological inhibitors of p38 MAPK and ERK1/2. The migratory and invasive potential of these treated cells were examined in vitro by transwell assays.</p> <p>Results</p> <p>In general, TGF-β2, TβRI and TβRII are over-expressed in more aggressive cells, except for TβRI, which was also highly expressed in ZR-75-1 cells. In addition, TGF-β1-treated MDA-MB-231 cells presented significantly increased mRNA expression of MMP-2, MMP-9, MMP-14, TIMP-2 and RECK. TGF-β1 also increased TIMP-2, MMP-2 and MMP-9 protein levels but downregulated RECK expression. Furthermore, we analyzed the involvement of p38 MAPK and ERK1/2, representing two well established Smad-independent pathways, in the proposed mechanism. Inhibition of p38MAPK blocked TGF-β1-increased mRNA expression of all MMPs and MMP inhibitors analyzed, and prevented TGF-β1 upregulation of TIMP-2 and MMP-2 proteins. Moreover, ERK1/2 inhibition increased RECK and prevented the TGF-β1 induction of pro-MMP-9 and TIMP-2 proteins. TGF-β1-enhanced migration and invasion capacities were blocked by p38MAPK, ERK1/2 and MMP inhibitors.</p> <p>Conclusion</p> <p>Altogether, our results support that TGF-β1 modulates the mRNA and protein levels of MMPs (MMP-2 and MMP-9) as much as their inhibitors (TIMP-2 and RECK). Therefore, this cytokine plays a crucial role in breast cancer progression by modulating key elements of ECM homeostasis control. Thus, although the complexity of this signaling network, TGF-β1 still remains a promising target for breast cancer treatment.</p
    corecore