9 research outputs found

    The prevalence, correlation, and co-occurrence of neuropathology in old age: harmonisation of 12 measures across six community-based autopsy studies of dementia

    Get PDF
    Background: Population-based autopsy studies provide valuable insights into the causes of dementia but are limited by sample size and restriction to specific populations. Harmonisation across studies increases statistical power and allows meaningful comparisons between studies. We aimed to harmonise neuropathology measures across studies and assess the prevalence, correlation, and co-occurrence of neuropathologies in the ageing population. Methods: We combined data from six community-based autopsy cohorts in the US and the UK in a coordinated cross-sectional analysis. Among all decedents aged 80 years or older, we assessed 12 neuropathologies known to be associated with dementia: arteriolosclerosis, atherosclerosis, macroinfarcts, microinfarcts, lacunes, cerebral amyloid angiopathy, Braak neurofibrillary tangle stage, Consortium to Establish a Registry for Alzheimer's disease (CERAD) diffuse plaque score, CERAD neuritic plaque score, hippocampal sclerosis, limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and Lewy body pathology. We divided measures into three groups describing level of confidence (low, moderate, and high) in harmonisation. We described the prevalence, correlations, and co-occurrence of neuropathologies. Findings: The cohorts included 4354 decedents aged 80 years or older with autopsy data. All cohorts included more women than men, with the exception of one study that only included men, and all cohorts included decedents at older ages (range of mean age at death across cohorts 88·0–91·6 years). Measures of Alzheimer's disease neuropathological change, Braak stage and CERAD scores, were in the high confidence category, whereas measures of vascular neuropathologies were in the low (arterioloscerosis, atherosclerosis, cerebral amyloid angiopathy, and lacunes) or moderate (macroinfarcts and microinfarcts) categories. Neuropathology prevalence and co-occurrence was high (2443 [91%] of 2695 participants had more than one of six key neuropathologies and 1106 [41%] of 2695 had three or more). Co-occurrence was strongly but not deterministically associated with dementia status. Vascular and Alzheimer's disease features clustered separately in correlation analyses, and LATE-NC had moderate associations with Alzheimer's disease measures (eg, Braak stage ρ=0·31 [95% CI 0·20–0·42]). Interpretation: Higher variability and more inconsistency in the measurement of vascular neuropathologies compared with the measurement of Alzheimer's disease neuropathological change suggests the development of new frameworks for the measurement of vascular neuropathologies might be helpful. Results highlight the complexity and multi-morbidity of the brain pathologies that underlie dementia in older adults and suggest that prevention efforts and treatments should be multifaceted. Funding: Gates Ventures

    A population-based meta-analysis of circulating GFAP for cognition and dementia risk

    Get PDF
    Funding Information: The authors thank the study participants, the study teams, and the investigators and staff of the cohort studies. Dr. Pase is supported by a Heart Foundation Future Leader Fellowship (GNT102052). Dr DeCarli is supported by the UCD ADRC P30 AG 010129. Dr Aparicio is supported by an American Academy of Neurology Career Development Award, Alzheimer's Association (AARGD‐20‐685362), and National Institutes of Health (L30 NS093634). Funding was provided by the CHARGE infrastructure grant (HL105756). Funding Information: This research was supported by contracts HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, N01HC15103, 75N92021D00006, and grants R01AG15928, R01AG20098, U01HL080295 and U01HL130114 from the National Heart, Lung, and Blood Institute (NHLBI), with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided by R01AG053325, K24AG065525, and R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS‐NHLBI.org. Funding Information: This work was made possible by grants from the Alzheimer's Drug Discovery Foundation (GDAPB‐202010‐2020940), National Institutes of Health (N01‐HC‐25195, HHSN268201500001I, 75N92019D00031) and the National Institute on Aging (AG059421, AG054076, AG049607, AG033090, AG066524, NS017950, P30AG066546, UF1NS125513). Funding Information: The Coronary Artery Risk Development in Young Adults Study (CARDIA) is supported by contract Nos. HHSN26820180003I, HHSN26820180004I, HHSN26820180005I, HHSN26820180006I, and HHSN26820180007I from the National Heart, Lung, and Blood Institute (NHLBI), the Intramural Research Program of the National Institute on Aging (NIA), and an intra‐agency agreement between NIA and NHLBI (No. AG0005) . Funding Information: The Age, Gene/Environment Susceptibility‐Reykjavik Study was supported by NIH contracts N01‐AG‐1‐2100 and HHSN27120120022C, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). Funding Information: Dr. Pase is supported by a Heart Foundation Future Leader Fellowship (GNT102052). Dr DeCarli is supported by the UCD ADRC P30 AG 010129. Dr Aparicio is supported by an American Academy of Neurology Career Development Award, Alzheimer's Association (AARGD‐20‐685362), and National Institutes of Health (L30 NS093634). Funding was provided by the CHARGE infrastructure grant (HL105756). Funding Information Publisher Copyright: © 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.Objective: Expression of glial fibrillary acidic protein (GFAP), a marker of reactive astrocytosis, colocalizes with neuropathology in the brain. Blood levels of GFAP have been associated with cognitive decline and dementia status. However, further examinations at a population-based level are necessary to broaden generalizability to community settings. Methods: Circulating GFAP levels were assayed using a Simoa HD-1 analyzer in 4338 adults without prevalent dementia from four longitudinal community-based cohort studies. The associations between GFAP levels with general cognition, total brain volume, and hippocampal volume were evaluated with separate linear regression models in each cohort with adjustment for age, sex, education, race, diabetes, systolic blood pressure, antihypertensive medication, body mass index, apolipoprotein E Δ4 status, site, and time between GFAP blood draw and the outcome. Associations with incident all-cause and Alzheimer's disease dementia were evaluated with adjusted Cox proportional hazard models. Meta-analysis was performed on the estimates derived from each cohort using random-effects models. Results: Meta-analyses indicated that higher circulating GFAP associated with lower general cognition (ß = −0.09, [95% confidence interval [CI]: −0.15 to −0.03], p = 0.005), but not with total brain or hippocampal volume (p > 0.05). However, each standard deviation unit increase in log-transformed GFAP levels was significantly associated with a 2.5-fold higher risk of incident all-cause dementia (Hazard Ratio [HR]: 2.47 (95% CI: 1.52–4.01)) and Alzheimer's disease dementia (HR: 2.54 [95% CI: 1.42–4.53]) over up to 15-years of follow-up. Interpretation: Results support the potential role of circulating GFAP levels for aiding dementia risk prediction and improving clinical trial stratification in community settings.Peer reviewe

    Kinetics of viral loads and genotypic analysis of elephant endotheliotropic herpesvirus-1 infection in captive Asian elephants (Elephas maximus)

    No full text
    Elephant endotheliotropic herpesviruses (EEHVs) can cause fatal hemorrhagic disease in juvenile Asian elephants (Elephas maximus); however, sporadic shedding of virus in trunk washes collected from healthy elephants also has been detected. Data regarding the relationship of viral loads in blood compared with trunk washes are lacking, and questions about whether elephants can undergo multiple infections with EEHVs have not been addressed previously. Real-time quantitative polymerase chain reaction was used to determine the kinetics of EEHV1 loads, and genotypic analysis was performed on EEHV1 DNA detected in various fluid samples obtained from five Asian elephants that survived detectable EEHV1 DNAemia on at least two separate occasions. In three elephants displaying clinical signs of illness, preclinical EEHV1 DNAemia was detectable, and peak whole-blood viral loads occurred 3 “8 days after the onset of clinical signs. In two elephants with EEHV1 DNAemia that persisted for 7 “21 days, no clinical signs of illness were observed. Detection of EEHV1 DNA in trunk washes peaked approximately 21 days after DNAemia, and viral genotypes detected during DNAemia matched those detected in subsequent trunk washes from the same elephant. In each of the five elephants, two distinct EEHV1 genotypes were identified in whole blood and trunk washes at different time points. In each case, these genotypes represented both an EEHV1A and an EEHV1B subtype. These data suggest that knowledge of viral loads could be useful for the management of elephants before or during clinical illness. Furthermore, sequential infection with both EEHV1 subtypes occurs in Asian elephants, suggesting that they do not elicit cross-protective sterilizing immunity. These data will be useful to individuals involved in the husbandry and clinical care of Asian elephants

    Coupled channel analysis of

    No full text
    A partial wave analysis of antiproton–proton annihilation data in flight at 900 MeV/c\mathrm {MeV/}c into π0π0η{\pi ^0\pi ^0\eta }, π0ηη{\pi ^0\eta \eta } and K+K−π0{K^+K^-\pi ^0} is presented. The data were taken at LEAR by the Crystal Barrel experiment in 1996. The three channels have been coupled together with ππ\pi \pi -scattering isospin I = 0 S- and D-wave as well as I = 1 P-wave data utilizing the K-matrix approach. Analyticity is treated using Chew–Mandelstam functions. In the fit all ingredients of the K-matrix, including resonance masses and widths, were treated as free parameters. In spite of the large number of parameters, the fit results are in the ballpark of the values published by the Particle Data Group. In the channel π0π0η{\pi ^0\pi ^0\eta } a significant contribution of the spin exotic IG=1−I^G=1^- JPC=1−+J^{PC}=1^{-+} π1\pi _1-wave with a coupling to π0η\pi ^0 \eta is observed. Furthermore the contributions of ϕ(1020)π0\phi (1020) \pi ^0 and K∗(892)±K∓K^*(892)^\pm K^\mp in the channel K+K−π0{K^+K^-\pi ^0} have been studied in detail. The differential production cross section for the two reactions and the spin-density-matrix elements for the ϕ(1020)\phi (1020) and K∗(892)±K^*(892)^\pm have been extracted. No spin-alignment is observed for both vector mesons. The spin density matrix elements have been also determined for the spin exotic wave

    A population-based meta-analysis of circulating GFAP for cognition and dementia risk.

    Get PDF
    ObjectiveExpression of glial fibrillary acidic protein (GFAP), a marker of reactive astrocytosis, colocalizes with neuropathology in the brain. Blood levels of GFAP have been associated with cognitive decline and dementia status. However, further examinations at a population-based level are necessary to broaden generalizability to community settings.MethodsCirculating GFAP levels were assayed using a Simoa HD-1 analyzer in 4338 adults without prevalent dementia from four longitudinal community-based cohort studies. The associations between GFAP levels with general cognition, total brain volume, and hippocampal volume were evaluated with separate linear regression models in each cohort with adjustment for age, sex, education, race, diabetes, systolic blood pressure, antihypertensive medication, body mass index, apolipoprotein E Δ4 status, site, and time between GFAP blood draw and the outcome. Associations with incident all-cause and Alzheimer's disease dementia were evaluated with adjusted Cox proportional hazard models. Meta-analysis was performed on the estimates derived from each cohort using random-effects models.ResultsMeta-analyses indicated that higher circulating GFAP associated with lower general cognition (ß = -0.09, [95% confidence interval [CI]: -0.15 to -0.03], p = 0.005), but not with total brain or hippocampal volume (p > 0.05). However, each standard deviation unit increase in log-transformed GFAP levels was significantly associated with a 2.5-fold higher risk of incident all-cause dementia (Hazard Ratio [HR]: 2.47 (95% CI: 1.52-4.01)) and Alzheimer's disease dementia (HR: 2.54 [95% CI: 1.42-4.53]) over up to 15-years of follow-up.InterpretationResults support the potential role of circulating GFAP levels for aiding dementia risk prediction and improving clinical trial stratification in community settings
    corecore