590 research outputs found
First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3
We carry out a completely first-principles study of the ferroelectric phase
transitions in BaTiO. Our approach takes advantage of two features of these
transitions: the structural changes are small, and only low-energy distortions
are important. Based on these observations, we make systematically improvable
approximations which enable the parameterization of the complicated energy
surface. The parameters are determined from first-principles total-energy
calculations using ultra-soft pseudopotentials and a preconditioned
conjugate-gradient scheme. The resulting effective Hamiltonian is then solved
by Monte Carlo simulation. The calculated phase sequence, transition
temperatures, latent heats, and spontaneous polarizations are all in good
agreement with experiment. We find the transitions to be intermediate between
order-disorder and displacive character. We find all three phase transitions to
be of first order. The roles of different interactions are discussed.Comment: 33 pages latex file, 9 figure
Assessing Environmental Governance of the Hudson River Valley: Application of an IPPEP Model
The process of obtaining effective implementation of environmental laws is a process of “environmental governance.” Law, including environmental law and other fields of law related to environmental law, is essential to frame, facilitate, and foster the major parties to correctly play their roles.
This thesis has been articulated through a Model of Interactions of Parties in the Process of Environmental Protection (IPPEP Model), which has been developed by Professor Wang Xi of Shanghai Jiao Tong University, in the context of the People’s Republic of China. The IPPEP Model is a tool for observing and accessing environmental governance at work. It is being tested by regional studies in various locations, such as the United States, the State of New York, and in this IPPEP case study of New York’s Hudson River Valley. The IPPEP model being examined, however, has universal applicability. Use of this model can predict that environmental standards will fail to be observed when necessary “Third Parties” are weak or absent. A nation with a commitment to the “rule of law” will enact and apply necessary legal procedures to ensure that each party can take part in the system and perform their role effectively.
Part I of this paper describes the IPPEP Model. Part II is a brief introduction to the history of Hudson River Valley. Part III introduces the major parties or players in the process of protecting Hudson River Valley. Part IV consists of five case studies applying the IPPEP Model in cases of Hudson River Valley conservation. Part V concludes the paper
Recommended from our members
Multiple models and experiments underscore large uncertainty in soil carbon dynamics
Soils contain more carbon than plants or the atmosphere, and sensitivities of soil organic carbon (SOC) stocks to changing climate and plant productivity are a major uncertainty in global carbon cycle projections. Despite a consensus that microbial degradation and mineral stabilization processes control SOC cycling, no systematic synthesis of long-term warming and litter addition experiments has been used to test process-based microbe-mineral SOC models. We explored SOC responses to warming and increased carbon inputs using a synthesis of 147 field manipulation experiments and five SOC models with different representations of microbial and mineral processes. Model projections diverged but encompassed a similar range of variability as the experimental results. Experimental measurements were insufficient to eliminate or validate individual model outcomes. While all models projected that CO efflux would increase and SOC stocks would decline under warming, nearly one-third of experiments observed decreases in CO flux and nearly half of experiments observed increases in SOC stocks under warming. Long-term measurements of C inputs to soil and their changes under warming are needed to reconcile modeled and observed patterns. Measurements separating the responses of mineral-protected and unprotected SOC fractions in manipulation experiments are needed to address key uncertainties in microbial degradation and mineral stabilization mechanisms. Integrating models with experimental design will allow targeting of these uncertainties and help to reconcile divergence among models to produce more confident projections of SOC responses to global changes. 2
The physics of dynamical atomic charges: the case of ABO3 compounds
Based on recent first-principles computations in perovskite compounds,
especially BaTiO3, we examine the significance of the Born effective charge
concept and contrast it with other atomic charge definitions, either static
(Mulliken, Bader...) or dynamical (Callen, Szigeti...). It is shown that static
and dynamical charges are not driven by the same underlying parameters. A
unified treatment of dynamical charges in periodic solids and large clusters is
proposed. The origin of the difference between static and dynamical charges is
discussed in terms of local polarizability and delocalized transfers of charge:
local models succeed in reproducing anomalous effective charges thanks to large
atomic polarizabilities but, in ABO3 compounds, ab initio calculations favor
the physical picture based upon transfer of charges. Various results concerning
barium and strontium titanates are presented. The origin of anomalous Born
effective charges is discussed thanks to a band-by-band decomposition which
allows to identify the displacement of the Wannier center of separated bands
induced by an atomic displacement. The sensitivity of the Born effective
charges to microscopic and macroscopic strains is examined. Finally, we
estimate the spontaneous polarization in the four phases of barium titanate.Comment: 25 pages, 6 Figures, 10 Tables, LaTe
Patterns and trends of organic matter processing and transport: Insights from the US long-term ecological research network
Organic matter (OM) dynamics determine how much carbon is stored in ecosystems, a service that modulates climate. We synthesized research from across the US Long-Term Ecological Research (LTER) Network to assemble a conceptual model of OM dynamics that is consistent with inter-disciplinary perspectives and emphasizes vulnerability of OM pools to disturbance. Guided by this conceptual model, we identified unanticipated patterns and long-term trends in processing and transport of OM emerging from terrestrial, freshwater, wetland, and marine ecosystems. Cross-ecosystem synthesis combined with a survey of researchers revealed several themes: 1) strong effects of climate change on OM dynamics, 2) surprising patterns in OM storage and dynamics resulting from coupling with nutrients, 3) characteristic and often complex legacies of land use and disturbance, 4) a significant role of OM transport that is often overlooked in terrestrial ecosystems, and 5) prospects for reducing uncertainty in forecasting OM dynamics by incorporating the chemical composition of OM. Cross-fertilization of perspectives and approaches across LTER sites and other research networks can stimulate the comprehensive understanding required to support large-scale characterizations of OM budgets and the role of ecosystems in regulating global climate
Physicochemical characterization and source apportionment of Arctic ice-nucleating particles observed in Ny-Ă…lesund in autumn 2019
Ice-nucleating particles (INPs) initiate primary ice formation in Arctic mixed-phase clouds (MPCs), altering cloud radiative properties and modulating precipitation. For atmospheric INPs, the complexity of their spatiotemporal variations, heterogeneous sources, and evolution via intricate atmospheric interactions challenge the understanding of their impact on microphysical processes in Arctic MPCs and induce an uncertain representation in climate models. In this work, we performed a comprehensive analysis of atmospheric aerosols at the Arctic coastal site in Ny-Ă…lesund (Svalbard, Norway) from October to November 2019, including their ice nucleation ability, physicochemical properties, and potential sources. Overall, INP concentrations (NINP) during the observation season were approximately up to 3 orders of magnitude lower compared to the global average, with several samples showing degradation of NINP after heat treatment, implying the presence of proteinaceous INPs. Particle fluorescence was substantially associated with INP concentrations at warmer ice nucleation temperatures, indicating that in the far-reaching Arctic, aerosols of biogenic origin throughout the snow- and ice-free season may serve as important INP sources. In addition, case studies revealed the links between elevated NINP and heat lability, fluorescence, high wind speeds originating from the ocean, augmented concentration of coarse-mode particles, and abundant organics. Backward trajectory analysis demonstrated a potential connection between high-latitude dust sources and high INP concentrations, while prolonged air mass history over the ice pack was identified for most scant INP cases. The combination of the above analyses demonstrates that the abundance, physicochemical properties, and potential sources of INPs in the Arctic are highly variable despite its remote location.</p
Synergies Among Environmental Science Research and Monitoring Networks: A Research Agenda
Many research and monitoring networks in recent decades have provided publicly available data documenting environmental and ecological change, but little is known about the status of efforts to synthesize this information across networks. We convened a working group to assess ongoing and potential cross-network synthesis research and outline opportunities and challenges for the future, focusing on the US-based research network (the US Long-Term Ecological Research network, LTER) and monitoring network (the National Ecological Observatory Network, NEON). LTER-NEON cross-network research synergies arise from the potentials for LTER measurements, experiments, models, and observational studies to provide context and mechanisms for interpreting NEON data, and for NEON measurements to provide standardization and broad scale coverage that complement LTER studies. Initial cross-network syntheses at co-located sites in the LTER and NEON networks are addressing six broad topics: how long-term vegetation change influences C fluxes; how detailed remotely sensed data reveal vegetation structure and function; aquatic-terrestrial connections of nutrient cycling; ecosystem response to soil biogeochemistry and microbial processes; population and species responses to environmental change; and disturbance, stability and resilience. This initial study offers exciting potentials for expanded cross-network syntheses involving multiple long-term ecosystem processes at regional or continental scales. These potential syntheses could provide a pathway for the broader scientific community, beyond LTER and NEON, to engage in cross-network science. These examples also apply to many other research and monitoring networks in the US and globally, and can guide scientists and research administrators in promoting broad-scale research that supports resource management and environmental policy
The Ny-Ă…lesund Aerosol Cloud Experiment (NASCENT): Overview and First Results
The Arctic is warming at more than twice the rate of the global average. This warming is influenced by clouds, which modulate the solar and terrestrial radiative fluxes and, thus, determine the surface energy budget. However, the interactions among clouds, aerosols, and radiative fluxes in the Arctic are still poorly understood. To address these uncertainties, the Ny-Ålesund Aerosol Cloud Experiment (NASCENT) study was conducted from September 2019 to August 2020 in Ny-Ålesund, Svalbard. The campaign’s primary goal was to elucidate the life cycle of aerosols in the Arctic and to determine how they modulate cloud properties throughout the year. In situ and remote sensing observations were taken on the ground at sea level, at a mountaintop station, and with a tethered balloon system. An overview of the meteorological and the main aerosol seasonality encountered during the NASCENT year is introduced, followed by a presentation of first scientific highlights. In particular, we present new findings on aerosol physicochemical and molecular properties. Further, the role of cloud droplet activation and ice crystal nucleation in the formation and persistence of mixed-phase clouds, and the occurrence of secondary ice processes, are discussed and compared to the representation of cloud processes within the regional Weather Research and Forecasting Model. The paper concludes with research questions that are to be addressed in upcoming NASCENT publications
- …