72 research outputs found

    Bone defect development in experimental canine peri-implantitis models: a systematic review

    Full text link
    PURPOSE To provide a systematic overview of preclinical research regarding bone defect formation around different implant surfaces after ligature-induced peri-implantitis models in dogs. Two focused questions were formulated: 'How much bone loss can be expected after a certain time of ligature induced peri-implantitis?' and 'Do different implant types, dog breeds and study protocols differ in their extent of bone loss?' MATERIALS AND METHODS A systematic literature search was conducted on four databases (MEDLINE, Web of Science, EMBASE and Scopus). Observations, which consisted of bone defects measured directly after ligature removal in canine models, were included and analysed. Two approaches were used to analyse the relatively heterogeneous studies that fulfilled the inclusion criteria. First, separate simple linear regressions were calculated for each study and implant surface, for which observations were available across multiple time points. Second, a linear mixed model was specified for the observations at 12 weeks after ligature initiation, and assessing the potential influencing factors on defect depth was explored using lasso regularisation. RESULTS Thirty-six studies with a total of 1082 implants were included after. Bone loss was determined at different time points, either with clinical measurements radiographically or histologically. Different implant groups [e.g. turned, sand-blasted-acid-etched (SLA), titanium-plasma-sprayed (TPS) and other rough surfaces] were assessed and described in the studies. A mean incremental defect depth increase of 0.08 mm (SD: -0.01-0.28 mm) per week was observed. After 12 weeks, the defect depths ranged between 0.7 and 5 mm. Based on the current data set, implant surface could not be statistically identified as an essential factor in defect depth after 12 weeks of ligature-induced peri-implantitis. CONCLUSION Expectable defect depth after a specific time of ligature-induced peri-implantitis can vary robustly. It is currently impossible to delineate apparent differences in bone loss around different implant surfaces

    Five-Year Survival of Short Single-Tooth Implants (6 mm): A Randomized Controlled Clinical Trial

    Full text link
    The aim of the present study was to evaluate whether 6-mm dental implants in the posterior segments of either jaw perform equally well in terms of clinical and radiographic outcomes when compared with 10-mm implants after 5 y of loading. Patients with single-tooth gaps in the posterior area who were scheduled for implant therapy were randomly assigned to a group receiving either a 6- or 10-mm implant. After a healing period of 10 wk, implants were loaded with a screw-retained single crown and followed up at yearly intervals. Of 96 patients, 86 could be recalled after 5 y. The implant survival rates amounted to 91% (95% confidence interval: 0.836 to 0.998) for the 6-mm group and 100% for the 10-mm group ( P = 0.036). Median crown-to-implant (C/I) ratios were 1.75 (interquartile range [IQR], 1.50 to 1.90) for the 6-mm group and 1.04 (IQR, 0.95 to 1.15) for the 10-mm group, whereas the median marginal bone levels measured -0.29 mm (IQR, -0.92 to 0.23) for the 6-mm group and -0.15 mm (IQR: -0.93 - 0.41) for the 10-mm group after 5 y. The C/I ratio turned out to be statistically significant ( P < 0.001), whereas marginal bone levels showed no significant difference between the groups. The 6-mm implants exhibited significantly lower survival rates than the 10-mm implants over 5 y, whereas there was no difference between upper and lower jaws in terms of survival ( P = 0.58). Lost implants did not show any sign of marginal bone loss or peri-implant infection previous to loss of osseointegration. High C/I ratio and implant length had no significant effect on marginal bone level changes or technical and biological complications (German Clinical Trials Registry: DRKS00006290)

    Global fire emissions buffered by the production of pyrogenic carbon

    Get PDF
    Landscape fires burn 3–5 million km2 of the Earth’s surface annually. They emit 2.2 Pg of carbon per year to the atmosphere, but also convert a significant fraction of the burned vegetation biomass into pyrogenic carbon. Pyrogenic carbon can be stored in terrestrial and marine pools for centuries to millennia and therefore its production can be considered a mechanism for long-term carbon sequestration. Pyrogenic carbon stocks and dynamics are not considered in global carbon cycle models, which leads to systematic errors in carbon accounting. Here we present a comprehensive dataset of pyrogenic carbon production factors from field and experimental fires and merge this with the Global Fire Emissions Database to quantify the global pyrogenic carbon production flux. We found that 256 (uncertainty range: 196–340) Tg of biomass carbon was converted annually into pyrogenic carbon between 1997 and 2016. Our central estimate equates to 12% of the annual carbon emitted globally by landscape fires, which indicates that their emissions are buffered by pyrogenic carbon production. We further estimate that cumulative pyrogenic carbon production is 60 Pg since 1750, or 33–40% of the global biomass carbon lost through land use change in this period. Our results demonstrate that pyrogenic carbon production by landscape fires could be a significant, but overlooked, sink for atmospheric CO2

    Biochar: pyrogenic carbon for agricultural use: a critical review.

    Get PDF
    O biocarvão (biomassa carbonizada para uso agrícola) tem sido usado como condicionador do solo em todo o mundo, e essa tecnologia é de especial interesse para o Brasil, uma vez que tanto a ?inspiração?, que veio das Terras Pretas de Índios da Amazônia, como o fato de o Brasil ser o maior produtor mundial de carvão vegetal, com a geração de importante quantidade de resíduos na forma de finos de carvão e diversas biomassas residuais, principalmente da agroindústria, como bagaço de cana, resíduos das indústrias de madeira, papel e celulose, biocombustíveis, lodo de esgoto etc. Na última década, diversos estudos com biocarvão têm sido realizados e atualmente uma vasta literatura e excelentes revisões estão disponíveis. Objetivou-se aqui não fazer uma revisão bibliográfica exaustiva, mas sim uma revisão crítica para apontar alguns destaques na pesquisa sobre biochar. Para isso, foram selecionados alguns temaschave considerados críticos e relevantes e fez-se um ?condensado? da literatura pertinente, mais para orientar as pesquisas e tendências do que um mero olhar para o passad

    Phase stability of the earth-abundant tin sulfides SnS, SnS2, and Sn2S3

    Get PDF
    The various phases of tin sulfide have been studied as semiconductors since the 1960s and are now being investigated as potential earth-abundant photovoltaic and photocatalytic materials. Of particular note is the recent isolation of zincblende SnS in particles and thin-films. Herein, first-principles calculations are employed to better understand this novel geometry and its place within the tin sulfide multiphasic system. We report the enthalpies of formation for the known phases of SnS, SnS2, and Sn2S3, with good agreement between theory and experiment for the ground-state structures of each. While theoretical X-ray diffraction patterns do agree with the assignment of the zincblende phase demonstrated in the literature, the structure is not stable close to the lattice parameters observed experimentally, exhibiting an unfeasibly large pressure and a formation enthalpy much higher than any other phase. Ab initio molecular dynamics simulations reveal spontaneous degradation to an amorphous phase much lower in energy, as Sn(II) is inherently unstable in a regular tetrahedral environment. We conclude that the known rocksalt phase of SnS has been mis-assigned as zincblende in the recent literature
    corecore