5 research outputs found

    Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest

    Get PDF
    Fungi are ubiquitous in the atmosphere and may play an important role in atmospheric processes. We investigated the composition and diversity of fungal communities over the Amazon rainforest canopy and compared these communities to fungal communities 5 found in terrestrial environments. We characterized the total fungal community and the metabolically active portion of the community using high-throughout DNA and RNA sequencing and compared these data to predictions generated by a mass-balance model. We found that the total community was primarily comprised of fungi from the phylum Basidiomycota. In contrast, the active community was primarily composed of 10 members of the phylum Ascomycota and included a high relative abundance of lichen fungi, which were not detected in the total community. The relative abundance of Basidiomycota and Ascomycota in the total and active communities was consistent with our model predictions, suggesting that this result was driven by the relative size and number of spores produced by these groups. When compared to other environments, 15 fungal communities in the atmosphere were most similar to communities found in tropical soils and leaf surfaces, suggesting that inputs of fungi to the atmosphere are from local, rather than distant, sources. Our results demonstrate that there are significant differences in the composition of the total and active fungal communities in the atmosphere, and that lichen fungi, which have been shown to be efficient ice nucleators, 20 may be abundant members of active atmospheric fungal communities over the forest canopy

    エイリ チエノワ/エイリ チエノワ

    Get PDF
    The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt–rich particles emitted by biota in the rainforest. These particles act as seeds for the condensation of low- or semi-volatile organic compounds from the atmospheric gas phase or multiphase oxidation of isoprene and terpenes. Our findings suggest that the primary emission of biogenic salt particles directly influences the number concentration of cloud condensation nuclei and affects the microphysics of cloud formation and precipitation over the rainforest

    Molecular resonances and the Jacobi shape transition in 48^{48}Cr

    No full text
    The ^{24]Mg + 24^{24}Mg reaction has been studied at the Legnaro Tandem at a CM bombarding energy of 45.7 MeV where a narrow and high spin resonance has been reported previously. The decay of the resonance into the inelastic and fusion-evaporation channels has been investigated. The ON and OFF resonance decay yields have been measured using, for the inelastic channels, the fragment spectrometer PRISMA and the γ\gamma array CLARA, and, for the fusion-evaporation channels, the Si array EUCLIDES and the γ\gamma array GASP. The resonant effects observed in both experiments are discussed and it is suggested that the resonance populates a deformed 48^{48}Cr after a Jacobi shape transition
    corecore