1,493 research outputs found

    Charged Particle with Magnetic Moment in the Aharonov-Bohm Potential

    Full text link
    We considered a charged quantum mechanical particle with spin 12{1\over 2} and gyromagnetic ratio g2g\ne 2 in the field af a magnetic string. Whereas the interaction of the charge with the string is the well kown Aharonov-Bohm effect and the contribution of magnetic moment associated with the spin in the case g=2g=2 is known to yield an additional scattering and zero modes (one for each flux quantum), an anomaly of the magnetic moment (i.e. g>2g>2) leads to bound states. We considered two methods for treating the case g>2g>2. \\ The first is the method of self adjoint extension of the corresponding Hamilton operator. It yields one bound state as well as additional scattering. In the second we consider three exactly solvable models for finite flux tubes and take the limit of shrinking its radius to zero. For finite radius, there are N+1N+1 bound states (NN is the number of flux quanta in the tube).\\ For R0R\to 0 the bound state energies tend to infinity so that this limit is not physical unless g2g\to 2 along with R0R\to 0. Thereby only for fluxes less than unity the results of the method of self adjoint extension are reproduced whereas for larger fluxes NN bound states exist and we conclude that this method is not applicable.\\ We discuss the physically interesting case of small but finite radius whereby the natural scale is given by the anomaly of the magnetic moment of the electron ae=(g2)/2103a_e=(g-2)/2\approx 10^{-3}.Comment: 16 pages, Latex, NTZ-93-0

    Multiplying unitary random matrices - universality and spectral properties

    Full text link
    In this paper we calculate, in the large N limit, the eigenvalue density of an infinite product of random unitary matrices, each of them generated by a random hermitian matrix. This is equivalent to solving unitary diffusion generated by a hamiltonian random in time. We find that the result is universal and depends only on the second moment of the generator of the stochastic evolution. We find indications of critical behavior (eigenvalue spacing scaling like 1/N3/41/N^{3/4}) close to θ=π\theta=\pi for a specific critical evolution time tct_c.Comment: 12 pages, 2 figure

    Seismic Efficiency for Simple Crater Formation in the Martian Top Crust Analog

    Get PDF
    The first seismometer operating on the surface of another planet was deployed by the NASA InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission to Mars. It gives us an opportunity to investigate the seismicity of Mars, including any seismic activity caused by small meteorite bombardment. Detectability of impact generated seismic signals is closely related to the seismic efficiency, defined as the fraction of the impactor's kinetic energy transferred into the seismic energy in a target medium. This work investigated the seismic efficiency of the Martian near surface associated with small meteorite impacts on Mars. We used the iSALE‐2D (Impact‐Simplified Arbitrary Lagrangian Eulerian) shock physics code to simulate the formation of the meter‐size impact craters, and we used a recently formed 1.5 m diameter crater as a case study. The Martian crust was simulated as unfractured nonporous bedrock, fractured bedrock with 25% porosity, and highly porous regolith with 44% and 65% porosity. We used appropriate strength and porosity models defined in previous works, and we identified that the seismic efficiency is very sensitive to the speed of sound and elastic threshold in the target medium. We constrained the value of the impact‐related seismic efficiency to be between the order of ∼10‐7 to 10‐6 for the regolith and ∼10‐4 to 10‐3 for the bedrock. For new impacts occurring on Mars, this work can help understand the near‐surface properties of the Martian crust, and it contributes to the understanding of impact detectability via seismic signals as a function of the target media

    High-sensitivity troponin I concentrations are a marker of an advanced hypertrophic response and adverse outcomes in patients with aortic stenosis

    Get PDF
    Aims: High-sensitivity cardiac troponin I (cTnI) assays hold promise in detecting the transition from hypertrophy to heart failure in aortic stenosis. We sought to investigate the mechanism for troponin release in patients with aortic stenosis and whether plasma cTnI concentrations are associated with long-term outcome. Methods and results: Plasma cTnI concentrations were measured in two patient cohorts using a high-sensitivity assay. First, in the Mechanism Cohort, 122 patients with aortic stenosis (median age 71, 67% male, aortic valve area 1.0 ± 0.4 cm2) underwent cardiovascular magnetic resonance and echocardiography to assess left ventricular (LV) myocardial mass, function, and fibrosis. The indexed LV mass and measures of replacement fibrosis (late gadolinium enhancement) were associated with cTnI concentrations independent of age, sex, coronary artery disease, aortic stenosis severity, and diastolic function. In the separate Outcome Cohort, 131 patients originally recruited into the Scottish Aortic Stenosis and Lipid Lowering Trial, Impact of REgression (SALTIRE) study, had long-term follow-up for the occurrence of aortic valve replacement (AVR) and cardiovascular deaths. Over a median follow-up of 10.6 years (1178 patient-years), 24 patients died from a cardiovascular cause and 60 patients had an AVR. Plasma cTnI concentrations were associated with AVR or cardiovascular death HR 1.77 (95% CI, 1.22 to 2.55) independent of age, sex, systolic ejection fraction, and aortic stenosis severity. Conclusions: In patients with aortic stenosis, plasma cTnI concentration is associated with advanced hypertrophy and replacement myocardial fibrosis as well as AVR or cardiovascular death

    Compressive Sensing of Signals Generated in Plastic Scintillators in a Novel J-PET Instrument

    Full text link
    The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The dis- cussed detector offers improvement of the Time of Flight (TOF) resolution due to the use of fast plastic scintillators and dedicated electronics allowing for sam- pling in the voltage domain of signals with durations of few nanoseconds. In this paper we show that recovery of the whole signal, based on only a few samples, is possible. In order to do that, we incorporate the training signals into the Tikhonov regularization framework and we perform the Principal Component Analysis decomposition, which is well known for its compaction properties. The method yields a simple closed form analytical solution that does not require iter- ative processing. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This is the key to introduce and prove the formula for calculations of the signal recovery error. In this paper we show that an average recovery error is approximately inversely proportional to the number of acquired samples

    Application of the Compress Sensing Theory for Improvement of the TOF Resolution in a Novel J-PET Instrument

    Get PDF
    Nowadays, in Positron Emission Tomography (PET) systems, a Time of Flight information is used to improve the image reconstruction process. In Time of Flight PET (TOF-PET), fast detectors are able to measure the difference in the arrival time of the two gamma rays, with the precision enabling to shorten significantly a range along the line-of-response (LOR) where the annihilation occurred. In the new concept, called J-PET scanner, gamma rays are detected in plastic scintillators. In a single strip of J-PET system, time values are obtained by probing signals in the amplitude domain. Owing to Compress Sensing theory, information about the shape and amplitude of the signals is recovered. In this paper we demonstrate that based on the acquired signals parameters, a better signal normalization may be provided in order to improve the TOF resolution. The procedure was tested using large sample of data registered by a dedicated detection setup enabling sampling of signals with 50 ps intervals. Experimental setup provided irradiation of a chosen position in the plastic scintillator strip with annihilation gamma quanta

    Analysis framework for the J-PET scanner

    Get PDF
    J-PET analysis framework is a flexible, lightweight, ROOT-based software package which provides the tools to develop reconstruction and calibration procedures for PET tomography. In this article we present the implementation of the full data-processing chain in the J-PET framework which is used for the data analysis of the J-PET tomography scanner. The Framework incorporates automated handling of PET setup parameters' database as well as high level tools for building data reconstruction procedures. Each of these components is briefly discussed.Comment: 6 pages, 1 figur

    Test of a single module of the J-PET scanner based on plastic scintillators

    Full text link
    Time of Flight Positron Emission Tomography scanner based on plastic scintillators is being developed at the Jagiellonian University by the J-PET collaboration. The main challenge of the conducted research lies in the elaboration of a method allowing application of plastic scintillators for the detection of low energy gamma quanta. In this article we report on tests of a single detection module built out from BC-420 plastic scintillator strip (with dimensions of 5x19x300mm^3) read out at two ends by Hamamatsu R5320 photomultipliers. The measurements were performed using collimated beam of annihilation quanta from the 68Ge isotope and applying the Serial Data Analyzer (Lecroy SDA6000A) which enabled sampling of signals with 50ps intervals. The time resolution of the prototype module was established to be better than 80ps (sigma) for a single level discrimination. The spatial resolution of the determination of the hit position along the strip was determined to be about 0.93cm (sigma) for the annihilation quanta. The fractional energy resolution for the energy E deposited by the annihilation quanta via the Compton scattering amounts to sigma(E)/E = 0.044/sqrt(E[MeV]) and corresponds to the sigma(E)/E of 7.5% at the Compton edge.Comment: 12 pages, 6 figures; Updated with editorial corrections related to publication in NIM
    corecore