81 research outputs found

    Warteraum Zukunft

    Get PDF
    Österreich wird sowohl in der Innen- wie auch in der Außenwahrnehmung stets als „Kulturnation“ gelobt und beschrieben: „Kultur spielt als Imagefaktor und auch als identitĂ€tsstiftendes Merkmal eine große Rolle.“1 Aber wie sieht die RealitĂ€t fĂŒr „JungschauspielerInnen“ und „JungregisseurInnen“ in der Kulturnation Österreich aus? Genau hier knĂŒpft die ĂŒbergestellte Forschungsfrage dieser Arbeit an: wie und wo stehen die jungen SchauspielerInnen und RegisseurInnen heute am Beginn ihrer Karriere, was fĂŒr Hindernisse gilt es zu ĂŒberwinden? Schon Brecht stellte sich immer wieder die Frage: „(Denn) wovon lebt der Mensch?“2 Was kostet ein Mensch heute? Diese Frage soll umgekehrt werden: Was ‚darf’ ein Mensch ĂŒberhaupt noch kosten? Dieses Forschungsinteresse wird gerahmt durch die Frage nach der Existenz eines Mangels an neuen kreativen Ideen des Nachwuchses in der Wiener Theaterszene. Die Arbeit gliedert sich in mehrere Teile, welche unterschiedliche Aspekte der Nachwuchsarbeit beleuchten sollen. Um die Arbeit an konkreten Zahlen und Fakten (Arbeitslosigkeit, soziale Lage, BerufsanfĂ€ngerInnen etc.) zu orientieren wird allein die Situation der „JungschauspielerInnen“ und „JungregisseurInnen“ in Wien untersucht werden. Der erste Teil widmet sich der Definitionsfindung: Die Zuschreibung ‚jung’ wurde mit Bedacht gewĂ€hlt und fasst die Ausdrucksweise der Feuilletons und Pressearbeit der TheaterhĂ€user auf. Aspekte der Soziologie und Psychologie werden ebenso analysiert wie gesetzliche Grundlagen, so dass am Ende die Frage nach einer Norm, eines Stereotyps, gestellt und beantwortet werden kann um die Leerstelle des Wortes ‚jung’ fĂŒllen zu können. Im Anschluss steht die soziale Ausgangslage im Fokus der Arbeit: Einkommensniveau, soziale Absicherung und Versicherungsschutz werden mit Hilfe des „Berichts zur sozialen Lage der KĂŒnstlerinnen und KĂŒnstler in Österreich“ untersucht und mögliche Antworten auf die erhobene Zahlen gesucht. Zudem soll der Blick auf die KomplexitĂ€t der verschiedenen Sozialsysteme geworfen werden um mögliche LĂŒcken und MĂ€ngel aufzeigen zu können. Um die aktive staatliche Nachwuchsförderung darzustellen werden sowohl die Magistratsabteilung 7, das Bundesministerium fĂŒr Unterricht, Kunst und Kultur sowie das Team 4 beschrieben und ihre aktuellen Förderungen kritisch hinterfragt. Abschließend werden derzeitige Formate der Wiener TheaterhĂ€user, die sich an „JungregisseurInnen“ und „JungschauspielerInnen“ richten, beschrieben und problematisiert. Die Arbeit soll aufzeigen, wie es um die „JungregisseurInnen“ und „JungschauspielerInnen“ heute bestellt ist, um ein Bild ĂŒber die gesellschaftliche Wahrnehmung und zugeschriebene ‚Wertigkeit’ im Bezug zur Forschungsgruppe skizzieren zu können. 1 Mailath-Pokorny 25.8.2009. 2 Brecht, B.: Schlusslied der Dreigroschenoper; Frankfurt am Main 2004, S.67

    The Regulation of Steroid Action by Sulfation and Desulfation

    Get PDF
    Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined

    CXCR7 prevents excessive CXCL12-mediated downregulation of CXCR4 in migrating cortical interneurons

    Get PDF
    The CXCL12/CXCR4 signaling pathway is involved in the development of numerous neuronal and non-neuronal structures. Recent work established that the atypical second CXCL12 receptor, CXCR7, is essential for the proper migration of interneuron precursors in the developing cerebral cortex. Two CXCR7-mediated functions were proposed in this process: direct modulation of ÎČ-arrestin-mediated signaling cascades and CXCL12 scavenging to regulate local chemokine availability and ensure responsiveness of the CXCL12/CXCR4 pathway in interneurons. Neither of these functions has been proven in the embryonic brain. Here, we demonstrate that migrating interneurons efficiently sequester CXCL12 through CXCR7. CXCR7 ablation causes excessive phosphorylation and downregulation of CXCR4 throughout the cortex in mice expressing CXCL12, but not in CXCL12-deficient animals. Cxcl12−/− mice lack activated CXCR4 in embryonic brain lysates and display a similar interneuron positioning defect as Cxcr4−/−, Cxcr7−/− and Cxcl12−/−;Cxcr7−/− animals. Thus, CXCL12 is the only CXCR4-activating ligand in the embryonic brain and deletion of one of the CXCL12 receptors is sufficient to generate a migration phenotype that corresponds to the CXCL12-deficient pathway. Our findings imply that interfering with the CXCL12-scavenging activity of CXCR7 causes loss of CXCR4 function as a consequence of excessive CXCL12-mediated CXCR4 activation and degradation

    Genotype-Independent Transmission of Transgenic Fluorophore Protein by Boar Spermatozoa

    Get PDF
    Recently, we generated transposon-transgenic boars (Sus scrofa), which carry three monomeric copies of a fluorophore marker gene. Amazingly, a ubiquitous fluorophore expression in somatic, as well as in germ cells was found. Here, we characterized the prominent fluorophore load in mature spermatozoa of these animals. Sperm samples were analyzed for general fertility parameters, sorted according to X and Y chromosome-bearing sperm fractions, assessed for potential detrimental effects of the reporter, and used for inseminations into estrous sows. Independent of their genotype, all spermatozoa were uniformly fluorescent with a subcellular compartmentalization of the fluorophore protein in postacrosomal sheath, mid piece and tail. Transmission of the fluorophore protein to fertilized oocytes was shown by confocal microscopic analysis of zygotes. The monomeric copies of the transgene segregated during meiosis, rendering a certain fraction of the spermatozoa non-transgenic (about 10% based on analysis of 74 F1 offspring). The genotype-independent transmission of the fluorophore protein by spermatozoa to oocytes represents a non-genetic contribution to the mammalian embryo

    Adolescence is a sensitive period for prefrontal microglia to act on cognitive development

    Full text link
    The prefrontal cortex (PFC) is a cortical brain region that regulates various cognitive functions. One distinctive feature of the PFC is its protracted adolescent maturation, which is necessary for acquiring mature cognitive abilities in adulthood. Here, we show that microglia, the brain’s resident immune cells, contribute to this maturational process. We find that transient and cell-specific deficiency of prefrontal microglia in adolescence is sufficient to induce an adult emergence of PFC-associated impairments in cognitive functions, dendritic complexity, and synaptic structures. While prefrontal microglia deficiency in adolescence also altered the excitatory-inhibitory balance in adult prefrontal circuits, there were no cognitive sequelae when prefrontal microglia were depleted in adulthood. Thus, our findings identify adolescence as a sensitive period for prefrontal microglia to act on cognitive development

    An overview and a roadmap for artificial intelligence in hematology and oncology

    Get PDF
    BACKGROUND Artificial intelligence (AI) is influencing our society on many levels and has broad implications for the future practice of hematology and oncology. However, for many medical professionals and researchers, it often remains unclear what AI can and cannot do, and what are promising areas for a sensible application of AI in hematology and oncology. Finally, the limits and perils of using AI in oncology are not obvious to many healthcare professionals. METHODS In this article, we provide an expert-based consensus statement by the joint Working Group on "Artificial Intelligence in Hematology and Oncology" by the German Society of Hematology and Oncology (DGHO), the German Association for Medical Informatics, Biometry and Epidemiology (GMDS), and the Special Interest Group Digital Health of the German Informatics Society (GI). We provide a conceptual framework for AI in hematology and oncology. RESULTS First, we propose a technological definition, which we deliberately set in a narrow frame to mainly include the technical developments of the last ten years. Second, we present a taxonomy of clinically relevant AI systems, structured according to the type of clinical data they are used to analyze. Third, we show an overview of potential applications, including clinical, research, and educational environments with a focus on hematology and oncology. CONCLUSION Thus, this article provides a point of reference for hematologists and oncologists, and at the same time sets forth a framework for the further development and clinical deployment of AI in hematology and oncology in the future

    Triticum timopheevii s.l. (‘new glume wheat’) finds in regions of southern and eastern Europe across space and time

    Get PDF
    Triticum timopheevii sensu lato (‘new glume wheat’, NGW) was first recognised as a distinct prehistoric cereal crop through work on archaeobotanical finds from Neolithic and Bronze Age sites in northern Greece. This was later followed by its identification in archaeobotanical assemblages from other parts of Europe. This paper provides an overview of the currently known archaeobotanical finds of Timopheev’s wheat in southeastern and eastern Europe and observes their temporal span and spatial distribution. To date, there are 89 prehistoric sites with these finds, located in different parts of the study region and dated from the Neolithic to the very late Iron Age. Their latest recorded presence in the region is in the last centuries BCE. For assemblages from the site as a whole containing at least 30 grain and/or chaff remains of Timopheev’s wheat, we take a brief look at the overall relative proportions of Triticum monococcum (einkorn), T. dicoccum (emmer) and T. timopheevii s.l. (Timopheev’s wheat), the three most common glume wheats in our study region in prehistory. We highlight several sites where the overall proportions of Timopheev’s wheat might be taken to suggest it was a minor component of a mixed crop (maslin), or an unmonitored inclusion in einkorn or emmer fields. At the same sites, however, there are also discrete contexts where this wheat is strongly predominant, pointing to its cultivation as a pure crop. We therefore emphasise the need to evaluate the relative representation of Timopheev’s wheat at the level of individual samples or contexts before making inferences on its cultivation status. We also encourage re-examination of prehistoric and historic cereal assemblages for its remains

    An overview and a roadmap for artificial intelligence in hematology and oncology.

    Get PDF
    Artificial intelligence (AI) is influencing our society on many levels and has broad implications for the future practice of hematology and oncology. However, for many medical professionals and researchers, it often remains unclear what AI can and cannot do, and what are promising areas for a sensible application of AI in hematology and oncology. Finally, the limits and perils of using AI in oncology are not obvious to many healthcare professionals

    A comprehensive analysis of autocorrelation and bias in home range estimation

    Get PDF
    Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function [AKDE], SilvermanÂŽs rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ((Formula presented.)) to quantify the information content of each data set. We found that AKDE 95% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the hold-out sets by AKDE 95% (or 50%) estimates was 95.3% (or 50.1%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing (Formula presented.). To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animalÂŽs movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small (Formula presented.). While 72% of the 369 empirical data sets had >1,000 total observations, only 4% had an (Formula presented.) >1,000, where 30% had an (Formula presented.) <30. In this frequently encountered scenario of small (Formula presented.), AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data.Fil: Noonan, Michael J.. National Zoological Park; Estados Unidos. University of Maryland; Estados UnidosFil: Tucker, Marlee A.. Senckenberg Gesellschaft FĂŒr Naturforschung; . Goethe Universitat Frankfurt; AlemaniaFil: Fleming, Christen H.. University of Maryland; Estados Unidos. National Zoological Park; Estados UnidosFil: Akre, Thomas S.. National Zoological Park; Estados UnidosFil: Alberts, Susan C.. University of Duke; Estados UnidosFil: Ali, Abdullahi H.. Hirola Conservation Programme. Garissa; KeniaFil: Altmann, Jeanne. University of Princeton; Estados UnidosFil: Antunes, Pamela Castro. Universidade Federal do Mato Grosso do Sul; BrasilFil: Belant, Jerrold L.. State University of New York; Estados UnidosFil: Beyer, Dean. Universitat Phillips; AlemaniaFil: Blaum, Niels. Universitat Potsdam; AlemaniaFil: Böhning Gaese, Katrin. Senckenberg Gesellschaft FĂŒr Naturforschung; Alemania. Goethe Universitat Frankfurt; AlemaniaFil: Cullen Jr., Laury. Instituto de Pesquisas EcolĂłgicas; BrasilFil: de Paula, Rogerio Cunha. National Research Center For Carnivores Conservation; BrasilFil: Dekker, Jasja. Jasja Dekker Dierecologie; PaĂ­ses BajosFil: Drescher Lehman, Jonathan. George Mason University; Estados Unidos. National Zoological Park; Estados UnidosFil: Farwig, Nina. Michigan State University; Estados UnidosFil: Fichtel, Claudia. German Primate Center; AlemaniaFil: Fischer, Christina. Universitat Technical Zu Munich; AlemaniaFil: Ford, Adam T.. University of British Columbia; CanadĂĄFil: Goheen, Jacob R.. University of Wyoming; Estados UnidosFil: Janssen, RenĂ©. Bionet Natuuronderzoek; PaĂ­ses BajosFil: Jeltsch, Florian. Universitat Potsdam; AlemaniaFil: Kauffman, Matthew. University Of Wyoming; Estados UnidosFil: Kappeler, Peter M.. German Primate Center; AlemaniaFil: Koch, FlĂĄvia. German Primate Center; AlemaniaFil: LaPoint, Scott. Max Planck Institute fĂŒr Ornithologie; Alemania. Columbia University; Estados UnidosFil: Markham, A. Catherine. Stony Brook University; Estados UnidosFil: Medici, Emilia Patricia. Instituto de Pesquisas EcolĂłgicas (IPE) ; BrasilFil: Morato, Ronaldo G.. Institute For Conservation of The Neotropical Carnivores; Brasil. National Research Center For Carnivores Conservation; BrasilFil: Nathan, Ran. The Hebrew University of Jerusalem; IsraelFil: Oliveira Santos, Luiz Gustavo R.. Universidade Federal do Mato Grosso do Sul; BrasilFil: Olson, Kirk A.. Wildlife Conservation Society; Estados Unidos. National Zoological Park; Estados UnidosFil: Patterson, Bruce. Field Museum of National History; Estados UnidosFil: Paviolo, Agustin Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Nordeste. Instituto de BiologĂ­a Subtropical. Instituto de BiologĂ­a Subtropical - Nodo Puerto IguazĂș | Universidad Nacional de Misiones. Instituto de BiologĂ­a Subtropical. Instituto de BiologĂ­a Subtropical - Nodo Puerto IguazĂș; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Nordeste; ArgentinaFil: Ramalho, Emiliano Esterci. Institute For Conservation of The Neotropical Carnivores; Brasil. Instituto de Desenvolvimento Sustentavel MamirauĂĄ; BrasilFil: Rösner, Sascha. Michigan State University; Estados UnidosFil: Schabo, Dana G.. Michigan State University; Estados UnidosFil: Selva, Nuria. Institute of Nature Conservation of The Polish Academy of Sciences; PoloniaFil: Sergiel, Agnieszka. Institute of Nature Conservation of The Polish Academy of Sciences; PoloniaFil: Xavier da Silva, Marina. Parque Nacional do Iguaçu; BrasilFil: Spiegel, Orr. Universitat Tel Aviv; IsraelFil: Thompson, Peter. University of Maryland; Estados UnidosFil: Ullmann, Wiebke. Universitat Potsdam; AlemaniaFil: Ziឝba, Filip. Tatra National Park; PoloniaFil: Zwijacz Kozica, Tomasz. Tatra National Park; PoloniaFil: Fagan, William F.. University of Maryland; Estados UnidosFil: Mueller, Thomas. Senckenberg Gesellschaft FĂŒr Naturforschung; . Goethe Universitat Frankfurt; AlemaniaFil: Calabrese, Justin M.. National Zoological Park; Estados Unidos. University of Maryland; Estados Unido
    • 

    corecore