23 research outputs found

    Acousto-optical multiple interference switches

    Get PDF
    The authors introduce an alternative approach for acousto-optical light control based on the interference of light propagating through several waveguides, each subjected to a periodic refractive index modulation induced by a surface acoustic wave. The feasibility of the concept is demonstrated by the realization of an optical switch for arbitrary time intervals with an on/off contrast ratio of 20

    Radiation of Neutron Stars Produced by Superfluid Core

    Get PDF
    We find that neutron star interior is transparent for collisionless electron sound, the same way as it is transparent for neutrinos. In the presence of magnetic field the electron sound is coupled with electromagnetic radiation and form the fast magnetosonic wave. We find that electron sound is generated by superfluid vortices in the stellar core. Thermally excited helical vortex waves produce fast magnetosonic waves in the stellar crust which propagate toward the surface and transform into outgoing electromagnetic radiation. The vortex radiation has the spectral index -0.45 and can explain nonthermal radiation of middle-aged pulsars observed in the infrared, optical and hard X-ray bands. The radiation is produced in the stellar interior which allows direct determination of the core temperature. Comparing the theory with available spectra observations we find that the core temperature of the Vela pulsar is T=8*10^8K, while the core temperature of PSR B0656+14 and Geminga exceeds 2*10^8K. This is the first measurement of the temperature of a neutron star core. The temperature estimate rules out equation of states incorporating Bose condensations of pions or kaons and quark matter in these objects. Based on the temperature estimate and cooling models we determine the critical temperature of triplet neutron superfluidity in the Vela core Tc=(7.5\pm 1.5)*10^9K which agrees well with recent data on behavior of nucleon interactions at high energies. Another finding is that in the middle aged neutron stars the vortex radiation, rather then thermal conductivity, is the main mechanism of heat transfer from the stellar core to the surface. Electron sound opens a perspective of direct spectroscopic study of superdense matter in the neutron star interiors.Comment: 43 pages, 7 figures, to appear in Astrophysical Journa

    Turning Points in the Evolution of Isolated Neutron Stars' Magnetic Fields

    Get PDF
    During the life of isolated neutron stars (NSs) their magnetic field passes through a variety of evolutionary phases. Depending on its strength and structure and on the physical state of the NS (e.g. cooling, rotation), the field looks qualitatively and quantitatively different after each of these phases. Three of them, the phase of MHD instabilities immediately after NS's birth, the phase of fallback which may take place hours to months after NS's birth, and the phase when strong temperature gradients may drive thermoelectric instabilities, are concentrated in a period lasting from the end of the proto--NS phase until 100, perhaps 1000 years, when the NS has become almost isothermal. The further evolution of the magnetic field proceeds in general inconspicuous since the star is in isolation. However, as soon as the product of Larmor frequency and electron relaxation time, the so-called magnetization parameter, locally and/or temporally considerably exceeds unity, phases, also unstable ones, of dramatic changes of the field structure and magnitude can appear. An overview is given about that field evolution phases, the outcome of which makes a qualitative decision regarding the further evolution of the magnetic field and its host NS.Comment: References updated, typos correcte

    Some applications of nanometer scale structures for current and future X-ray space research

    No full text
    Nanometer scale structures such as multilayers, gratings and natural crystals are playing an increasing role in spectroscopic applications for X-ray astrophysics. A few examples are briefly described as an introduction to current and planned applications pursued at the Danish Space Research Institute in collaboration with the FOM Institute for Plasma Physics, Nieuwegein, the Max-Planck-Institut für Extraterrestrische Physik, Aussenstelle Berlin, the Space Research Institute, Russian Academy of Sciences, the Smithsonian Astrophysical Observatory, Ovonics Synthetic Materials Company and Lawrence Livermore National Laboratory. These examples include : 1. the application of multilayered Si crystals for simultaneous spectroscopy in two energy bands one centred around the SK-emission near 2.45 keV and the other below the CK absorption edge at 0.284 keV; 2. the use of in-depth graded period multilayer structures for broad band spectroscopy in the energy range up to 100 keV; 3. the potential use of large perfect asymmetrically cut Si or Ge crystals combined with a short focal length multilayer telescope for ultra high energy resolution solar/stellar spectroscopy with E/ΔE>104E/\Delta E > 10^4 and; 4. high throughput multilayer coated telescope for high resolution Fe K line spectroscopy with microcalorimeters
    corecore